Thermophoresis of a cylindrical particle embedded in a porous medium saturated by a micropolar fluid

Downloads

Authors

  • S. Nishad Department of Mathematics, National Institute of Technology Raipur, India 0009-0003-9865-7392
  • K.P. Madasu Department of Mathematics, National Institute of Technology Raipur, India 0000-0002-1819-3651

Abstract

The present study examines the thermophoresis of a cylindrical particle in a direction perpendicular to its axis in the Brinkman medium. To describe the behaviour of micropolar fluid driven by a thermal gradient within such a porous medium, the modified Brinkman’s equation is applied while considering low Reynolds and Péclet numbers. The governing equations for both the particle and the medium are solved using the separation of variables technique. The boundary conditions applied at the particle surface are thermal jump and heat flux continuity, with viscous slip, thermal creep, thermal stress slip and microrotation slip. The main objective of the research is to derive the expressions for thermophoretic velocity and thermophoretic force of a cylindrical particle. Graphical representations illustrate the thermophoretic velocity and force of the particle for various physical parameters, including the permeability, micropolarity parameter, thermal stress slip parameter, viscous slip parameter, Knudsen number, and thermal conductivity parameters. The results show that an increase in the micropolarity parameter decreases both the thermophoreti velocity and the force. Additionally, thermophoretic velocity increases with higher permeability, while the thermophoretic force decreases with increasing permeability and the thermal conductivity ratio. The findings of this research align with previously published studies and hold potential applications in industrial processes, including filtration, heat exchangers, air cleaning, and manufacturing thermal precipitators. 

Keywords:

thermophoresis, cylindrical particle, micropolar fluid, porous medium

References


  1. S.P. Bakanov, Thermophoresis in gases at small Knudsen numbers, Aerosol Science and Technology, 15, 77–92, 1991, https://doi.org/10.1080/02786829108959515

  2. F. Zheng, Thermophoresis of spherical and non-spherical particles: A review of theories and experiments, Advances in Colloid and Interface Science, 97, 255–278, 2002, https://doi.org/10.1016/S0001-8686(01)00067-7

  3. E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York and London, 1938.

  4. J. Brock, On the theory of thermal forces acting on aerosol particles, Journal of Colloid Science, 17, 768–780, 1962, https://doi.org/10.1016/0095-8522(62)90051-X

  5. Y.C. Chang, H.J. Keh, Effects of thermal stress slip on thermophoresis and photophoresis, Journal of Aerosol Science, 50, 1–10, 2012, https://doi.org/10.1016/j.jaerosci.2012.03.006

  6. Y.C. Chang, H.J. Keh, Thermophoresis at small but finite Péclet numbers, Aerosol Science and Technology, 52, 1028–1036, 2018, https://doi.org/10.1080/02786826.2018.1498588

  7. Y.M. Tseng, H.J. Keh, Thermophoresis of a cylindrical particle at small finite Péclet numbers, Aerosol Science and Technology, 55, 54–62, 2021, https://doi.org/10.1080/02786826.2020.1812504

  8. H.J. Keh, Y.C. Chang, Thermophoresis of an aerosol spheroid along its axis of revolution, Physics of Fluids, 21, 062001, 2009, https://doi.org/10.1063/1.3156002

  9. H.J. Keh, H.J. Tu, Thermophoresis and photophoresis of cylindrical particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 176, 2-3, 213–223, 2001, https://doi.org/10.1016/S0927-7757(00)00567-7

  10. Y.C. Chang, H.J. Keh, Thermophoresis and photophoresis of an aerosol cylinder with thermal stress slip, American Journal of Heat and Mass Transfer, 4, 85–103, 2017, https://doi.org/10.7726/ajhmt.2017.1006

  11. L.J. Wang, H.J. Keh, Boundary effects on thermophoresis of aerosol cylinders, Journal of Aerosol Science, 41, 771–789, 2010, https://doi.org/10.1016/j.jaerosci.2010.05.002

  12. S.Y. Lu, C.T. Lee, Thermophoretic motion of an aerosol particle in a non-concentric pore, Journal of Aerosol Science, 32, 1341–1358, 2001, https://doi.org/10.1016/S0021-8502(01)00054-4

  13. H.J. Keh, P.Y. Chen, Thermophoresis of an aerosol sphere parallel to one or two plane walls, AIChE Journal, 49, 2283–2299, 2003, https://doi.org/10.1002/aic.690490906

  14. H.J. Keh, Y.C. Chang, Thermophoresis of an aerosol sphere perpendicular to two plane walls, AIChE Journal, 52, 1690–1704, 2006, https://doi.org/10.1002/aic.10788

  15. D.A. Nield, A. Bejan, Convection in Porous Media, Springer, New York, 2006.

  16. P.K. Yadav, A. Tiwari, S. Deo, A. Filippov, S. Vasin, Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition, Acta Mechanica, 215, 193–209, 2010, https://doi.org/10.1007/s00707-010-0331-8

  17. P.K. Yadav, S. Deo, M.K. Yadav, A. Filippov, On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles, Colloid Journal, 75, 611–622, 2013, https://doi.org/10.1134/S1061933X13050165

  18. P.K. Yadav, S. Deo, Stokes flow past a porous spheroid embedded in another porous medium, Meccanica, 47, 1499–1516, 2012, https://doi.org/10.1007/s11012-011-9533-y

  19. K.E. Ragab, M.S. Faltas, M.A. Saad, Modeling thermophoretic transport of a colloidal particle in porous media with planar wall constraints, Physics of Fluids, 37, 082026, 2025, https://doi.org/10.1063/5.0280178

  20. M.S. Faltas, K.E. Ragab, Thermophoretic and photophoretic velocities and forces of a spherical particle embedded in Brinkman medium, European Physical Journal Plus, 134, 475, 2019, https://doi.org/10.1140/epjp/i2019-12855-y

  21. M.S. Faltas, K.E. Ragab, Thermophoresis of cylindrical particle immersed in Brinkman fluid, Colloid Journal, 83, 676–687, 2021, https://doi.org/10.1134/S1061933X2106003X

  22. M.S. Faltas, H.H. Sherief, A.A. Allam, M.G. Nashwan, M. El-Sayed, Thermophoresis of a spherical particle in a permeable microchannel with thermal stress slip, Physical Review Fluids, 8, 054102, 2023, https://doi.org/10.1103/PhysRevFluids.8.054102

  23. B.C. Prasannakumara, J.K. Madhukesh, G.K. Ramesh, Bioconvective nanofluid flow over an exponential stretched sheet with thermophoretic particle deposition, Propulsion and Power Research, 12, 284–296, 2023, https://doi.org/10.1016/j.jppr.2023.05.004

  24. M.S. Faltas, H.H. Sherief, M.M. Ismail, Thermophoresis migration of an aerosol spherical particle embedded in a Brinkman medium at small non-zero Péclet numbers, Physics of Fluids, 35, 2023, https://doi.org/10.1063/5.0160402

  25. J.S. Huang, H.H. Hsu, Effect of thermophoresis on particle deposition on an inclined plate in variable viscosity fluid flow with in a porous medium, Case Studies in Thermal Engineering, 67, 105813, 2025, https://doi.org/10.1016/j.csite.2025.105813

  26. S. Nishad, K.P. Madasu, Thermophoresis of an aerosol cylinder in Brinkman medium within a cylindrical cavity, Archive of Mechanical Engineering, 72, 177–198, 2025, https://doi.org/10.24425/ame.2025.153735

  27. A.C. Eringen, Microcontinuum Field Theories II: Fluent Media, Springer Science and Business Media, New York, 2001.

  28. S. El-Sapa, M.S. Faltas, K.E. Ragab, Oscillatory Brinkman-micropolar electroosmosis in cylindrical microannuli, Chinese Journal of Physics, 97, 1464–1491, 2025, https://doi.org/10.1016/j.cjph.2025.08.015

  29. E.I. Saad, M.S. Faltas, Theory of thermophoresis of a spherical particle embedded in a micropolar fluid, Journal of Molecular Liquids, 282, 527–544, 2019, https://doi.org/10.1016/j.molliq.2019.02.118

  30. E.I. Saad, M.S. Faltas, Thermophoresis of a spherical particle straddling the interface of a semi-infinite micropolar fluid, Journal of Molecular Liquids, 312, 113289, 2020, https://doi.org/10.1016/j.molliq.2020.113289

  31. P. Roja, T. Reddy, S.M. Ibrahim, G. Lorenzini, N.A.C. Sidik, The effect of thermophoresis on MHD stream of a micropolar liquid through a porous medium with variable heat and mass flux and thermal radiation, CFD Letters, 14, 118–136, 2022, https://doi.org/10.37934/cfdl.14.4.118136

  32. W. Liu, J. Wang, G. Xia, Z. Li, Thermophoresis of nanoparticles in the transition regime, Physics of Fluids, 35, 2023, https://doi.org/10.1063/5.0161744

  33. S. Nishad, K.P. Madasu, Axisymmetric migration of an aerosol sphere in bounded micropolar fluid: thermophoresis effect, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47, 144, 2025, https://doi.org/10.1007/s40430-025-05416-0

  34. N. Sarma, A. Paul, B. Patgiri. Numerical analysis of maxwell hybrid nanofluid flow implementing modified Fourier–Fick’s model through an unsteady vertical cylinder with brownian motion and thermophoresis, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47, 1–17, 2025, https://doi.org/10.1007/s40430-025-05722-7

  35. A. Singh, P.K. Yadav, Analysis of bio-convective ternary hybrid nanofluid flow in atherosclerotic bifurcated artery: A numerical approach, Computer Methods and Programs in Biomedicine, 273, 109129, 2026, https://doi.org/10.1016/j.cmpb.2025.109129

  36. P. Srivastava, P.K. Yadav, Brinkman–Forchheimer model for unsteady mixed convective magnetohydrodynamics flow of couple stress fluid through swarm of particles at high magnetic Reynold number: Cell model technique, Chemical Engineering Science, 321, 122758, 2026, https://doi.org/10.1016/j.ces.2025.122758

  37. A.M. Abd-Alla, I.A. Abbas, S.M. Abo-Dhab, Y. Elmhedy, H. Sapoor, M.A. Abdelhafez, Effect of magnetic field and heat transfer on peristaltic flow of a micropolar fluid through a porous medium, Waves in Random and Complex Media, 35, 2, 4070–4081, 2025, https://doi.org/10.1080/17455030.2022.2058111

  38. N.A. Khan, M. Sulaiman, Heat transfer and thermal conductivity of magneto micropolar fluid with thermal non-equilibrium condition passing through the vertical porous medium, Waves in Random and Complex Media, 35, 5, 9735–9759, 2025, https://doi.org/10.1080/17455030.2022.2108161

  39. M.S. Kausar, A.B.M. Ali, T. Anwar, A. Sottarov, T. Walelign, M. Waqas, A computational framework for micropolar fluid considering chemical reaction in porous media with stagnation point flow over a stretchable sheet in the presence of viscous dissipation, International Journal of Thermofluids, 30, 101453, 2025, https://doi.org/10.1016/j.ijft.2025.101453

  40. S. Ahamedsheriff, V. Rajaram, G. Mani, S.T.M. Thabet, I. Kedim, Impacts of soret and dufour possessions on micropolar fluid past a stretching sheet in a porous medium, Scientific Reports, 15, 33059, 2025, https://doi.org/10.1038/s41598-025-18302-5

  41. A. Kumar, P.K. Yadav, Heat and mass transfer analysis of non-miscible couple stress and micropolar fluids flow through a porous saturated channel, Journal of Applied Mathematics and Mechanics, 104, e202300635, 2024, https://doi.org/10.1002/zamm.202300635

  42. L. Kumar, A. Singh, V.K. Joshi, K. Sharma, MHD micropolar fluid flow with hall current over a permeable stretching sheet under the impact of Dufour–Soret and chemical reaction, International Journal of Thermofluids, 26, 101042, 2025, https://doi.org/10.1016/j.ijft.2024.101042

  43. S. Nishad, K.P. Madasu, Motion of an aerosol sphere in hydrogel medium under thermal gradient, Archives of Mechanics, 77, 2, 177–212, 2025, https://doi.org/10.24423/aom.4587

  44. S. Nishad, K.P. Madasu, Boundary effects on thermophoretic migration of a spherical particle in Brinkman micropolar fluid within a cavity, Physics of Fluids, 37, 082067, 2025, https://doi.org/10.1063/5.0285728

  45. M.T. Kamel, D. Roach, M.H. Hamdan, On the micropolar fluid flow through porous media, Proceedings of the 11th WSEAS International Conference on Mathematical Methods, Computational Techniques and Inteligent Systems, 190–197, 2009.

  46. K.P. Madasu, D. Srinivasacharya, Micropolar fluid flow through a cylinder and a sphere embedded in a porous medium, International Journal of Fluid Mechanics Research, 44, 3, 229–240, 2017, https://doi.org/10.1615/InterJFluidMechRes.2017015283

  47. D.Y. Khanukaeva, A.N. Filippov, Isothermal flows of micropolar liquids: Formulation of problems and analytical solutions, Colloid Journal, 80, 4–36, 2018, https://doi.org/10.1134/S1061933X18010040

  48. S. El-Sapa, Effect of permeability of Brinkman flow on thermophoresis of a particle in a spherical cavity, European Journal of Mechanics B/Fluids, 79, 315–323, 2020, https://doi.org/10.1016/j.euromeChflu.2019.09.017

  49. L. Talbot, R.K. Cheng, R.W. Schefer, D.R. Willis, Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics 101, 737–758, 1980, https://doi.org/10.1017/S0022112080001905