Planar plasma source and a floating wall

Downloads

Authors

  • A. Riazantsev Institute of Plasma Physics and Laser Microfusion, Poland 0000-0001-6891-7403
  • Z. Peradzyński Military University of Technology, Poland

Abstract

The Debye sheath that forms at the plasma-wall interface is discussed by means of the one dimensional collisionless kinetic model. We pay special attention to the simplification often adopted both in theoretical descriptions and numerical simulations, treating the wall as a perfect absorber. We show that this assumption, although it greatly simplifies the considerations, is too restrictive from the physical point of view as it leads to an overdetermined problem. This becomes somewhat understandable if we notice that this assumption does not allow for taking into account any properties of the wall.

Keywords:

Debye sheath, collisionless plasma, plasma-wall interactions, collisionless kinetic model

References


  1. K.U. Riemann, Kinetic theory of the plasma sheath transition in a weakly ionized plasma, The Physics of Fluids, 24, 12, 2163–2172, 1981, https://doi.org/10.1063/1.863332

  2. J.T. Scheuer, G.A. Emmert, A collisional model of the plasma presheath, The Physics of Fluids, 31, 6, 1748–1756, 1988, https://doi.org/10.1063/1.866663

  3. K.U. Riemann, The Bohm criterion and boundary conditions for a multicomponent system, IEEE Transactions on Plasma Science, 23, 4, 709–716, 1995, https://doi.org/10.1109/27.467993

  4. K.U. Riemann, Plasma-sheath transition in the kinetic Tonks-Langmuir model, Physics of Plasmas, 13, 6, 063508, 2006, https://doi.org/10.1063/1.2209928

  5. F.X. Bronold, R.L. Heinisch, J. Marbach, H. Fehske, Plasma walls beyond the perfect absorber approximation for electrons, IEEE Transactions on Plasma Science, 39, 2, 644–651, 2011, https://doi.org/10.1109/TPS.2010.2094209

  6. H.S.W. Massey, E.H.S. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford, 1952.

  7. H.D. Hagstrum, Low energy de-excitation and neutralization processes near surfaces, Inelastic Ion-Surface Collisions, N.H. Tolk, J.C. Tully, W. Heiland, C.W. White [eds.], pp. 1–25, Elsevier, 1977, https://doi.org/10.1016/b978-0-12-703550-5.50006-6

  8. H. Kersten, H. Deutsch, M. Otte, G. Swinkels, G. Kroesen, Micro-disperse par- ticles as probes for plasma surface interaction, Thin Solid Films, 377-378, 530–536, 2000, https://doi.org/10.1016/S0040-6090(00)01439-5

  9. M.Y. Ye, S. Takamura, Effect of space-charge limited emission on measurements of plasma potential using emissive probes, Physics of Plasmas, 7, 8, 3457–3463, 2000, https://doi.org/10.1063/1.874210

  10. A. Dove, M. Horanyi, X. Wang, M. Piquette, A.R. Poppe, S. Robertson, Experimental study of a photoelectron sheath, Physics of Plasmas, 19, 4, 043502, 2012, https://doi.org/10.1063/1.370170

  11. A. Palov, H. Fujii, S. Hiro, Monte Carlo simulation of 1 eV–35 keV electron scattering in teflon, Japanese Journal of Applied Physics, 37, 11R, 6170, 1998, https://doi.org/10.1143/JJAP.37.6170

  12. J. Vaughan, A new formula for secondary emission yield, IEEE Transactions on Electron Devices, 36, 9, 1963–1967 1989, https://doi.org/10.1109/16.34278

  13. L.A. Schwager, C.K. Birdsall, Collector and source sheaths of a finite ion temperature plasma, Physics of Fluids B: Plasma Physics, 2, 5, 1057–1068, 1990, https://doi.org/10.1063/1.859279

  14. L.A. Schwager, Effects of secondary and thermionic electron emission on the collector and source sheaths of a finite ion temperature plasma using kinetic theory and numerical simulation, Physics of Fluids B: Plasma Physics, 5, 2, 631–645, 1993, https://doi.org/10.1063/1.860495

  15. R.J. Procassini, C.K. Birdsall, E.C. Morse, A fully kinetic, self-consistent particle simulation model of the collisionless plasma–sheath region, Physics of Fluids B: Plasma Physics, 2, 12, 3191–3205 1990, https://doi.org/10.1063/1.859229

  16. T. Gyergyek, J. Kovačič, Saturation of a floating potential of an electron emitting electrode with increased electron emission: A one-dimensional kinetic model and particle-in-cell simulation, Physics of Plasmas, 19, 1, 013506, 2012, https://doi.org/10.1063/1.3677359

  17. A. Denig, K. Hara, Kinetic Model of Plasma Sheath Near a Dielectric-Coated, Metal Wall, 37thInternational Electric Propulsion Conference, IEPC-2022-345, 2022.

  18. K.U. Riemann, Theory of the plasma-sheath transition, Journal of Technical Physics, 41, 1, 89–121, 2000.

  19. D. Bohm, Minimum ionic kinetic energy for a stable sheath, The Characteristics of Electrical Discharges in Magnetic Fields, A. Guthrie, R.K. Wakerling [eds.], pp. 77–86, McGraw Hill, New York, NY, 1949.

  20. S. Kuhn, Axial equilibria, disruptive effects, and Buneman instability in collisionless single-ended Q-machines, Plasma Physics, 23, 10, 881, 1981, https://doi.org/10.1088/0032-1028/23/10/002

  21. N. Sternberg, V. Godyak, The Bohm plasma-sheath model and the Bohm criterion revisited, IEEE Transactions on Plasma Science, 35, 5, 1341–1349, 2007, https://doi.org/10.1109/TPS.2007.905944

  22. G.D. Hobbs, J.A. Wesson, Heat flow through a Langmuir sheath in the presence of electron emission, Plasma Physics, 9, 1, 85, 1967, https://doi.org/10.1088/0032-1028/9/1/410

  23. V.I. Demidov, S.V. Ratynskaia, K. Rypdal, Electric probes for plasmas: The link between theory and instrument, Review of Scientific Instruments, 73, 10, 3409–3439, 2002, https://doi.org/10.1063/1.1505099

  24. D.W. Vance, Surface charging of insulators by ion irradiation, Journal of Applied Physics, 42, 13, 5430–5443 1971, https://doi.org/10.1063/1.1659961

  25. H. Winter, Scattering of atoms and ions from insulator surfaces, Progress in Surface Science, 63, 7, 177–247, 2000, https://doi.org/10.1016/S0079-6816(99)00020-9

  26. N. Tanaka, F. Ikemoto, I. Yamada, Y. Shimabukuro, M. Kisaki, W.A. Diño, M. Sasao, M. Wada, H. Yamaoka, Positive and negative hydrogen ion reflections of low-energy atomic and molecular hydrogen ion beam from HOPG and Mo surfaces, Review of Scientific Instruments, 91, 1, 013313, 2020, https://doi.org/10.1063/1.5129576

  27. R. Behrisch, W. Eckstein, Ion backscattering from solid surfaces, Physics of Plasma-Wall Interactions in Controlled Fusion, D.E. Post, R. Behrisch [eds.], pp. 413–438, Springer US, Boston, MA, 1986, https://doi.org/10.1007/978-1-4757-0067-1_10

  28. P.J. Martin, Ion-based methods for optical thin film deposition, Journal of Materials Science, 21, 1, 1–25, 1986, https://doi.org/10.1007/bf01144693

  29. J. Cuthbertson, W. Langer, R. Motley, Reflection of low energy plasma ions from metal surfaces, Journal of Nuclear Materials, 196-198, 113–128, 1992, https://doi.org/10.1016/S0022-3115(06)80017-6

  30. H.D. Hagstrum, Reflection of noble gas ions at solid surfaces, Physical Review, 123, 758–765, 1961, https://doi.org/10.1103/PhysRev.123.758

  31. V. Godyak, N. Sternberg, On the consistency of the collisionless sheath model, Physics of Plasmas, 9, 11, 4427–4430, 2002, https://doi.org/10.1063/1.1513155

  32. L. Tonks, I. Langmuir, A general theory of the plasma of an arc, Physical Review, 34, 876–922, 1929, https://doi.org/10.1103/PhysRev.34.876

  33. S.A. Self, Exact solution of the collisionless plasma-sheath equation, The Physics of Fluids, 6, 12, 1762–1768, 1963, https://doi.org/10.1063/1.1711020

  34. G.A. Emmert, R.M. Wieland, A.T. Mense, J.N. Davidson, Electric sheath and presheath in a collisionless, finite ion temperature plasma, The Physics of Fluids, 23, 4, 803–812, 1980, https://doi.org/10.1063/1.863062

  35. A. Lopez Ortega, I.G. Mikellides, 2D fluid-PIC simulations of hall thrusters with self-consistent resolution of the space-charge regions, Plasma, 6, 3, 550–562, 2023, https://doi.org/10.3390/plasma6030038

  36. D.D. Tskhakaya, I. Vasileska, L. Kos, N. Jelić, S. Kuhn, Time-dependent kinetic theory of the plasma-wall transition layer in a weakly ionized plasma, Physics of Plasmas, 27, 2, 023517, 2020, https://doi.org/10.1063/1.5123911

  37. D.D. Tskhakaya, I. Vasileska, L. Kos, Time-dependent behavior of a Debye sheath: Lengthening and establishment of the stationary state, Physics of Plasmas, 28, 6, 063511, 2021, https://doi.org/10.1063/5.0046308

  38. K. Rasek, F.X. Bronold, H. Fehske, Kinetic modeling of the electric double layer at a dielectric plasma-solid interface, Physical Review E, 102, 023206, 2020, https://doi.org/10.1103/PhysRevE.102.023206

  39. K. Rasek, F.X. Bronold, H. Fehske, Charge kinetics across a negatively biased semiconducting plasma-solid interface, Physical Review E, 105, 045202, 2022, https://doi.org/10.1103/PhysRevE.105.045202