ARCHIVES OF MECHANICS
Arch. Mech. 77 (6), 647-]678] 2025, https://doi.org/10.24423 /aom.4789

Thermophoresis of a cylindrical particle embedded
in a porous medium saturated by a micropolar fluid

S. NISHAD", K. P. MADASU*

Department of Mathematics, National Institute of Technology Raipur,
492010, Chhattisgarh, India,

e-mails: snishad.phd2022.maths@nitrr.ac.in,
madaspra.maths@nitrr.ac.in, kpm973@gmail.com (corresponding author)

THE PRESENT STUDY EXAMINES THE THERMOPHORESIS of a cylindrical particle in
a direction perpendicular to its axis in the Brinkman medium. To describe the
behaviour of micropolar fluid driven by a thermal gradient within such a porous
medium, the modified Brinkman’s equation is applied while considering low Reynolds
and Péclet numbers. The governing equations for both the particle and the medium
are solved using the separation of variables technique. The boundary conditions ap-
plied at the particle surface are thermal jump and heat flux continuity, with viscous
slip, thermal creep, thermal stress slip and microrotation slip. The main objective
of the research is to derive the expressions for thermophoretic velocity and ther-
mophoretic force of a cylindrical particle. Graphical representations illustrate the
thermophoretic velocity and force of the particle for various physical parameters, in-
cluding the permeability, micropolarity parameter, thermal stress slip parameter,
viscous slip parameter, Knudsen number, and thermal conductivity parameters. The
results show that an increase in the micropolarity parameter decreases both the ther-
mophoreti velocity and the force. Additionally, thermophoretic velocity increases with
higher permeability, while the thermophoretic force decreases with increasing perme-
ability and the thermal conductivity ratio. The findings of this research align with
previously published studies and hold potential applications in industrial processes,
including filtration, heat exchangers, air cleaning, and manufacturing thermal pre-
cipitators.
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Notation
a radius of circular cylinder [m],
kp thermal conductivity of the particle [W-m™' - K],
ka thermal conductivity of the medium [W-m™" - K™'],
T, the temperature distribution for the cylindrical particle [K],
T the temperature distribution for the porous medium [K],
Foo the prescribed thermal gradient in the absence of the particle [K - m™?],
Ct the thermal jump coefficient of the particle surface,
Cm the frictional slip coefficient at the particle surface,
Cs the thermal creep coefficient at the particle surface,
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Ch the thermal stress slip coefficient at the particle surface,

Ch the microrotation slip coefficient at the particle surface,

k1 the permeability [m?],

Up, Up velocity components in cylindrical coordinates [m - sfl],

U fluid velocity [m -s™'],

U uniform velocity of the particle [m -s™!],

To absolute temperature at the position of particle center in the absence
of the particle [K],

Teo prescribed temperature distribution in the absence of the particle [K],

F drag force exerted on the cylindrical particle [N],

Fr thermophoretic force [N],

l mean free path of the gas molecules [m],

P pressure [N - m™2],

€p, €9, €. unit vectors in p, § and z directions,

Ur thermophoretic velocity [m -s™*],

Kn(x¥)  the modified Bessel’s function of order n.

Greek symbols

m viscosity of classical fluid [kg-m™" -s7!],

Kp rotational coefficient [kg - m™* -5,

ao, Bo, Yo gyroviscosity coefficients of micropolar fluid [kg - m -s™!],
v microrotation vector [rad -s™!],

@ vorticity vector [rad - s™!],

pa density of the fluid [kg - m™3],

%) porosity of the porous medium,

P radial cylindrical coordinate [m],

0 angular cylindrical coordinate,

v? Laplacian operator,

M,p, M,ye  mnormal and shear stresses in fluid phase [N - m™?

Stokes stream function of the fluid [m® - s™].

I

1. Introduction

THERMOPHORESIS IS THE MOTION OF PARTICLES in a gaseous medium that
arises due to a temperature gradient. When a temperature difference forms in
a medium with suspended particles, these particles tend to migrate from hotter
regions to colder ones. This mechanism is known as thermophoresis. The study
of thermophoresis has received significant interest from researchers because of its
wide range of applications, which includes air purification, protection of nuclear
reactors, manufacturing of electronic devices, and the removal of soot particles
from combustion emissions |1, [2]. In thermophoresis, molecules in the hotter
region of the fluid medium possess more energy and have a stronger influence
on particles than those in the colder region, causing them to migrate in the
opposite direction of the thermal gradient |3|. The Knudsen number is a signif-
icant parameter for the study of thermophoresis phenomena, and it is denoted
as K, = [/a (I and a represent the particle’s mean free path and characteristic
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length, respectively). The totally immersed solid particle is surrounded by a nar-
row fluid layer called the Knudsen layer, which flows along the direction of the
ambient temperature gradient.

In recent years, many authors have elaborated on the thermophoresis the-
ory in Newtonian fluids by adopting the geometries such as spheres, spheroids,
cylinders, parallel plates, microtubes, etc. In 1962, BROCK [4] analyzed the ther-
mophoresis of an aerosol sphere using a perturbation technique. CHANG and
KEH [5] investigated the thermophoretic migration of a solid sphere under the
consideration of thermal stress slip condition. Using the perturbation technique,
CHANG and KEH [6], and TSENG and KEH |7] investigated the thermophoresis
of a spherical and a cylindrical particles by assuming a non-zero Péclet number.
KEH and CHANG |[§] examined the thermophoresis phenomenon of a spheroid
particle in the direction of axis of revolution. KEH and TU [9] obtained the an-
alytical formulas for the thermophoretic movement of a solid cylinder along the
normal direction to its axis. CHANG and KEH [10] analyzed the thermal stress
slip effect on the motion of a solid cylinder under thermal gradient. They found
the thermal stress slip can enhance or reduce the thermophoretic velocity, de-
pending on the physical and interfacial characteristics of both the medium and
particle. WANG and KEH |11] discussed the effects of boundary on thermophore-
sis of an aerosol cylinder along the direction of perpendicular and parallel to their
axis. LU and LEE [12| analyzed the migration of a solid sphere within a non-
concentric pore under non-unifrom thermal environment. KEH and CHEN |13]
investigated the parallel thermophoretic movement of an aerosol spherical parti-
cle between two plane walls. Also, KEH and CHANG [14] considered the motion
of an aerosol sphere in a normal direction between two plane walls under a tem-
perature gradient.

A porous medium refers to a structure composed of interconnected voids and
solid spaces. The movement of fluids through porous materials is essential for
numerous scientific, engineering, and technological purposes. This kind of fluid
flow is particularly important in areas such as geothermal energy, fiber and gran-
ular insulation, and particle sedimentation [15H17]. YADAV and DEO [18] con-
sidered the problem of incompressible, steady flow of Newtonian fluid through
a porous spheroid immersed in another porous medium. RAGAB et al. [19] con-
ducted a theoretical study using the boundary collocation scheme to discuss the
axisymmetric migration of a colloidal sphere in the Brinkman medium. Their re-
search specifically focused on the movement of the sphere near a bounding wall
under the influence of a temperature gradient. FALTAS and RAGAB [20] 21| exam-
ined the problems of thermophoresis of particles (spherical and cylindrical) in the
Brinkman medium. FALTAS et al. |22] analyzed the thermophoresis of a spher-
ical particle between two permeable channels. PRASANNAKUMARA et al. |23|
conducted a discussion on two-dimensional laminar flow through the Brinkman
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medium with the thermophoresis effect. FALTAS et al. |24] discussed the move-
ment of a solid sphere embedded within the Brinkman medium under the
condition of a non-vanishing Péclet number. HUANG and Hsu [25| analyzed
the mechanism of thermal transport of aerosol particles in a viscous fluid hav-
ing variable viscosity. NISHAD and MADASU |[26] discussed the thermophoretic
movement of a solid cylinder in a cylindrical cavity using the Brinkman model.

The concept of micropolar fluids was proposed by ERINGEN [27], which ac-
counts for the effects of microstructure and the rotational dynamics of fluid
particles. There are many applications in the fields of science, engineering, and
industry for this theory. The Navier—Stokes equations of classical fluid dynam-
ics do not account for the behaviour of fluids with microstructure. ERINGEN [27]
developed the theory of micropolar fluid to model such types of fluids.
EL-SAPA et al. |28] performed an analytical study on unsteady, time-periodic
flow of a micropolar fluid through a porous media in a cylindrical microan-
nulus. SAAD and FALTAs |29, |30] have explored several interesting problems
involving thermophoretic transport of spherical particles in micropolar fluid.
RoOJA et al. [31] discussed the thermophoretic migration of suspended particles
in micropolar fluids while considering the influence of the magnetohydrody-
namics. L1U et al. [32] examined the thermophoretic migration of nanoparti-
cles in the transition regime using molecular dynamics simulations. NISHAD and
MADASU |[33] analyzed the effects of boundary and micropolarity on the move-
ment of a spherical particle in micropolar fluid within a spherical cavity under
thermal gradient. SARMA et al. |34] discussed the impacts of thermophoresis,
Brownian motion, and non-uniform heat sources on the Maxwell nanofluid flow
through a vertical cylinder.

Recent studies on flow of non-Newtonian fluids through porous media have
become a vital research area, providing insights capable of tackling a variety
of complex fluid dynamics challenges. This field of study has promising appli-
cations in several industries, including oil and petroleum, where understanding
fluid flow can enhance extraction efficiency. Additionally, it plays a vital role in
chemical filtration processes, where the flow of fluids through porous filters is es-
sential for effective separation. This concept is also important in biomedical
applications, particularly for understanding blood flow through porous vascu-
lar structures, which are crucial for developing improved treatments for vari-
ous circulatory ailments. SINGH and YADAV [35] conducted an analysis on the
modeling of blood trihybrid nanofluid flow through porous branched-type ar-
teries that exhibit stenoses and aneurysms. They employed a finite difference
approach for the analysis. SRIVASTAVA and YADAV [36] examined the mixed con-
vection of couple stress fluid flow through arrays of vertical cylinders, which are
enclosed by a homogeneous permeable wall. ABD-ALLA et al. |37 investigated
the peristaltic flow problem of a micropolar fluid through a porous medium.
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They explored the impact of coupling number, Hartmann number, micropo-
lar parameter, permeability on velocity, temperature and microrotation using
ND solve Mathematica. KHAN and SULAIMAN [38] examined the incompressible
mixed convection flow of a micropolar fluid under an electric field and thermal
non-equilibrium within a vertical circular porous medium (pipe) utilizing the
non-Darcy—Brinkman-Forchheimer model. KAUSAR et al. [39] conducted a com-
putational analysis of micropolar fluid flow in porous media over a stretchable
sheet, accounting for chemical reaction, thermal radiation, and viscous dissipa-
tion. AHAMEDSHERIFF et al. [40] studied Soret and Dufour effects on magneto
micropolar fluid flow past a stretching sheet in a permeable medium. KUuMAR
and YADAV [41] discussed the immiscible flow of couple stress and micropolar
fluids through a permeable channel, considering the effects of thermal radiation
and magnetic field. This type of study has applications in the design of elec-
tronic devices and optimizing the efficiency of thermal power systems. KUMAR
et al. [42] studied the flow of micropolar fluid over a stretching sheet in the non-
Darcy permeable medium, taking into account the Soret—Dufour effects, Hall
current, magnetic effect, and chemical reactions. In view of the thermophoresis
theory, NISHAD and MADASU [43] investigated the thermophoresis of a spherical
particle in a porous medium saturated with a micropolar fluid. Recently, NISHAD
and MADASU [44] have discussed the effects of micropolarity parameter, perme-
ability, and separation parameter on the thermophoretic movement of a solid
sphere in the Brinkman non-Newtonian fluid within a cavity.

The studies previously discussed in the literature focus on the flow of non-
Newtonian fluids through porous media, examining various effects such as ther-
mophoresis, magnetic fields, and thermal radiation. Some research is conducted
under specified surface temperature boundary conditions, while others employ
non-Newtonian heating thermal boundary conditions. In this paper, the authors
concentrate on the thermophoretic transport of a cylindrical particle embed-
ded in the Brinkman medium that consists of a micropolar fluid. The key con-
tribution of this research is to derive the expressions for the thermophoretic
velocity and force of the cylindrical particle. In this study, we examine the im-
pacts of various factors, including thermal properties, micropolarity parameter,
permeability, viscous slip, thermal stress slip, and thermal jump parameter on
the thermophoretic velocity and force of a solid cylindrical particle immersed
in a micropolar fluid. This work extends the study of NISHAD and MADASU [43]
to the case of a cylindrical particle. Aerosol particles, which can take various
shapes such as spheres, cylinders, and spheroids, contribute significantly to en-
vironmental pollution. In our research, we focus on cylindrical aerosol particle
to analyze their behaviour in a micropolar fluid of porous medium. The find-
ings show that the migration of the particle is affected by the micropolar and
permeability characteristics of the medium. Understanding this topic can help
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industrial fields effectively remove small dust particles from precipitators and fil-
ters that undergo temperature gradients. However, this study does not consider
several situations, such as the unsteady flow of micropolar fluid, high Reynolds
number, or non-zero Péclet number. Additionally, this work does not consider
inhomogeneous porous media or the impacts of magnetic field, concentration,
Brownian motion, chemical reactions, etc.

2. Mathematical formulation

Assume the thermophoretic migration of a circular cylinder of radius a hav-
ing thermal conductivity k,. This cylinder is embedded in a micropolar fluid,
saturated with a porous medium characterized by an overall thermal conductiv-
ity k4. Let (p, 0, z) be a system of cylindrical coordinates with origin O situated
at the center of the cylinder and (€,, €, €.) as the corresponding unit vectors.
An uniform thermal gradient V T, = —FE €; is established far from the parti-
cle. Let U denote the uniform velocity of the cylinder normal to its axis, which
needs to be determined (as presented in Fig. . The following assumptions are
considered to the study:

e The micropolar fluid flow through the homogenous Brinkman medium is
steady and slow.

e The Reynolds number is sufficiently small; thus, the convective acceleration
terms in the flow equations can be neglected.

e [t is assumed that the thermal force is greater as compared to the inertial
term; so, the Péclet number is small.

Y

Plp.d

Cylindrical particle

orous region

*__—__—_—-
VI,=-E,e,

FiGg. 1. Physical model of thermophoretic motion of a cylindrical particle
in a micropolar fluid.
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2.1. Governing equation in porous media

In this analysis, we utilize an equation to explain the first law of thermody-
namics in porous media. We consider that the porous medium is isotropic and
homogenous, leading to neglect the effects of radiation, work done by pressure
changes, and the viscous dissipation terms. Consequently, the equations govern-
ing the thermal distributions for a steady state, in the absence of a heat source
are |15, |21]

(2.1) V. kaVT =0,

where k4 represents the overall thermal conductivity of the porous medium, and
is

(2'2) ka= (1 - Sp)kf + ks,

in which k¢ and k; signify the thermal conductivity of fluid, thermal conductivity
of solid phase of porous medium, respectively, and ¢ is the porosity of the porous
media.

2.2. Field and energy equations of micropolar fluid in porous medium

The equations, which govern the flow of micropolar fluid in a porous media
in absence of inertial terms, body force and body torque are [45-47]:

(2.3) V.i=0,
(1 + Kp)
k1
(25) IﬂipvXﬁ—Qlﬁipﬁ—i-(ao—i-,@()—l-’yo)V(v-ﬁ)—’y()VXV>< vV=0,

(2.4) Vp + U+ (p+rp) VXV XU—k,VXxIU=0,

where @, p, 11, kp, U, o, Bo, Yo indicate the velocity vector, pressure, classical fluid
viscosity, rotational viscosity coefficient, microrotation vector and gyroviscosity
coeflicients of micropolar fluid, respectively, and k; represents permeability of
the porous medium.

The material coefficients (u, &, o, Bo, Y0) satisfy the following inequalities:

HZO7 ’QpZO) 2M+K‘p205
7% =0, =7 < Bo<1, 3ap+ Lo+ =0.

The expressions for stress tensor, couple stress tensor and heat flux vector of
micropolar fluid are |27, 29):

(2.6) II=—pl+ (,u + KQP) (Vi + (V)") + kpe - (& — D),
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(2.7) m=— (6 -VT) + aogl - Vi + BoVi + 40(VD),

paTo
(2.8) E = ka(apaTo V x 7 — VT),

where (Vi)! represents the transpose of Vi, also & = %V X, I, €, pa repre-
sent vorticity vector, unit dyadic, unit triadic, mass density, and Fourier heat
conduction coefficients, respectively. Ty denotes the temperature at the center
of a particle, and « represents heat conduction due to microrotation of the mi-
cropolar fluid.

2.3. Boundary conditions

The first slip component, is known as a viscous slip or frictional slip, and it
can be expressed mathematically for micropolar fluid

(2.9) fy = ol (I —7iit) - (7 : 10),
2p+ Ky

where 77 denotes the unit normal vector at the solid surface, the quantity C,, is
a dimensionless quantity, known as the viscous (frictional) slip coefficient. This
coeflicient is related to the momentum accommodation coefficient at the solid
surface, can be consider in gas rarefaction; [ represents the mean free path of
a gaseous molecule.

The second slip component, is known as a thermal creep. For micropolar
fluid, it can be given as
Cs(21 + Kp) [ — i) B,

2paToka

where C5 denotes the thermal creep coeflicient. The velocity slip indicates
thermal creep flow resulting from the longitudinal temperature gradient on the
particle’s surface. The thermal creep phenomenon can be included in the com-
putations of gas flows in vacuum systems, microchannels, and several other
applications where thermal imbalance leads to the gas flow.

The third velocity slip component is known as a thermal stress slip; its general
form in micropolar fluid is

CnlCh(2
(2.11) gy = CmlCn2it p)
2paToka
where (', is the dimensionless thermal stress slip coefficient.

Additionally, the microrotation slip condition at the solid surface in a mi-
cropolar fluid is

(2.10) g = —

(I — i) (- VE),

Chl -
— (I — 7ifl) -
270 + Bo
where C), is the dimensionless spin slip coefficient.

(2.12) 7=
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Further, velocity and microrotation vectors vanish far away from the par-
ticle as:

(2.13) u—0, 7—0, asp— o0.

Consider the micropolar fluid flow through a porous medium is governed by
(12.3)—(2.5)). The velocity vector is assumed to be independent of the z-coordinate,

therefore the velocity and microrotation vectors are:
ﬁ:up(p79)gp+u0(p79)€97 ﬁ:VZ(p79)€Z7

where (€, €y, €-) represent unit vectors corresponding to the directions of p, 0,
and z, respectively. The micropolar fluid flow around the particle, expressed in
cylindrical polar coordinates is related to the stream function v through

- (100 oy
(2.14) 7 = (upup) = (me’ —ap).

Defining nondimensional parameters p = ap, u = aU, p = (uUp/a), V = (V/a),
v, = (UD,/a) into Egs. (2.3)—(2.5)) and eliminating the tildes, we have found the
simplified equations:

o (A+x) ;00 xov. (1+x) 0

oap _ oy X U o2
(2.15) p p LT p 00 p 80v ¥
LOp_ 00 0
(2.17) 2, + V) — %v%z =0,
n
where

? 109 1 02
V2 =55 + =+ =5 2
dp>  pOp p* 00
is the Laplacian operator, and various parameters in Eqgs. (2.15)—(2.17)) are shown
in Table [l

TABLE 1. Various non-dimensional parameters.

Parameters Symbols | Definition

Permeability parameter n Lk

1
Micropolarity parameter X fip
I8

o2

Ratio of rotational and gyroviscosity coefficient n? Bt
Yo
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Eliminating pressure from Eqgs. ) and -, we get

(2.18) Vi, = H—X(vﬂv? —Vvh,
and substitututing in Eq. ,
(2.19) vo = —3 (1= PM)V?6 + MV*),
where M = X
From Eqs and , we get
(2.20) VQ(V2 = M(VZ =)y =0,
where
(2.21) M4 =202 - M2 M =272
and
N \/772 +on2— M-+ \/(7722+ 2% — M-1)2 — 8772712, N = 27;227)2
1

where A1 and )y are parameters, which depend on permeability, classical fluid
viscosity, and rotational viscosity and gyroviscosities.

The solution of the sixth order partial differential equation (2.20)) is given
as [46|

A
(2.22) ¢ = <p + Bp + CK1(M1p) + DIi(A1p) + EK1(A2p) + F11(>\2P)) sin ),

by substituting the stream function in Eq. (2.19), we have found the expression
for the microrotation vector

(223) Vv, = —%(CflKl()\lp) + D{ljl()\lp) + E{QKI()\Q/)) + F§211(>\2,0)) sin 9,

where

&= (1= M)A+ MAL, &= (1— M )A3 + MX;,

and I,,(-), K,(-) are the modified Bessel functions of the first and second kind
of order n, respectively; n = 0 or 1. A, B, C, D, E, F are arbitrary constants
which will be found using boundary conditions at the particle surface. Note that,

Egs. (2.22) and (2.23)), are bounded as p — oo (Eq. (2.13)). So, the constants
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B,D,F — 0, and the stream function and microrotation vector are then given

by:
A .
(2.24) Y= (,0 + CK1(A1p) + EKl()\gp)> sin 6,
1 .
(2.25) v:=—5 (C’flKl(Alp) + E§2K1()\2p)) sin 6.
The expression for pressure is

(2.26) p=(1+x)n?Ap~! cos + constant.

The expressions of velocity components u, and ug, normal stress II,,, shear
stress Il 9 and couple stress m,. are given as:

A N CKi(A\p) n EKl()\gp)> cos b,

0 p p

(2.27)  w, = (
(2.28)  wg = L‘; + i()\lpKO()\lp) + Ki(Aip))

+— ()\QPKO A2p) +K1(>\2P))] sin 6,
C
2

P (2K1(A1p) + AipKo(Mip))

A
(2.29) M, = —(2p + Kp) [,03(2 + A1nPr?) +

E
+ ?(2K1(>\2P) + >\2PK0()\2P))] cos b,

24 C A2
230) o=@+ )| 5 + 5 (510 NP, 2} dpHa(up)

2 2

+ 5 (8000 (2 4 2) 4 dapan)

ﬁ(cj{l()\lp)(fl )‘%) + EK1(Aa2p)(§2 — )‘%))] sin 0,

(2.31) my, = {(2%2:50) (C&1K1(Mp) + E& K1 (A2p))

+ ;*0 (Cél()\lpKO()\lp) — K1(M1p))

P

+ E& ()\ngg()\gp) — K1()\2p))>+ 2aZ<1 — f;)] sin 0,

where

W+ Ky

A = :
! 21+ Ky
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2.4. Temperature distributions

The governing equations of the temperature inside a cylindrical particle and
for the micropolar fluid are governed by the Laplace equation as follows:

(2.32) VT, =0, p<a,
(2.33) VT =0, p>a.

The convective heat transfer term is not included in Egs. (2.32) and (2.33)). The
Reynolds number and Péclet number are very small for the present study of
slow micropolar fluid flow. The heat flux vector of micropolar fluid (E) and
the particle (E,) are defined as [29, [30]:

(2.34)
(2.35)

E= kA(OszT()V X U — VT),
E, = —k,VT),.
Temperature jump and heat flux continuous conditions

At the particle surface p = a, we assume the temperature jump condition
and contnuity of heat flux:

(2.36) T-T,= —(]j'j(ﬁ - &,),

(2.37) E-é,=E, ¢,

with

(2.38) T — Ty =Ty — Expcosf, asp— oo,

where C} denotes the temperature jump coefficient at the particle surface.

Applying the boundary conditions (2.36)—(2.38]) in Egs. (2.32)—(2.33)), we get

following systems of linear equations:

Cia

207
(C{lKl()\la) + E{QKI()\QCL)) — 1.

(2.39) A1 —-B(1+Cla2=Ci—1— (C&1K1(Ma) + Béa K (A2a)),

(07

2.4 Ay + Bja % =
(2.40) kA1 + Bia 527

Temperature distributions within and outside the particle are given as:

(2.41) T, =To+ A1Expcost,
(2.42) T =Ty — Ex(1+ Bip?)pcosé,
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where
Ay = 25, + a(cflKl()\la)Qg E§2K1(/\2a)),
By = 6,654+ 05153(C§1K1()\1262 + EﬁgKl(/\Qa))7
G1=0+KkC+1)7Y S=0+kC—1)), d3=1+kC),
S A

2.5. Slip conditions at the particle surface

At the cylindrical particle surface, boundary conditions are as follows [30]:
(2.43) u, =Ucos¥,

s(2
(2.44) wup = —Usinf + 2Cml Iy + Cs (24 + ip) ( L oT + aa(puz)>

20+ Ky 2 paTop 90 " pp
cmzch(aump)( 1 3(1 a:r) a<1 d >>
- =5 | tas-| = 5=(pv2) ) ),
2 paTo Op \ p 00 dp pﬁp(p )
Chl
245) v, = —" m,,.
(2.45) 2v%0+ B0 "

The conditions far away from the particle are:
(2.46) up, =ug =1, =0, asp—oo.

Putting the expressions from Egs. (2.27)—(2.31]) into the boundary conditions
(2.43)—(2.45), we get a set of linear equations for finding the unknowns A, C,

and E:

(247)  A+CS +ESy; =T,

(2.48) 2AT| +20(81 + A1S3 4+ Cry T3 — Crn Cp T2 Yg — C T4 Ty)
+2E(Sy + XSy + Cu Y6 — CrnCr Y5 g — Cs Y7 Yg) + 2U

= (Cs — H1B1)YgZ,
(2.49) HyZB1+CYg+ EY19 = HoZ,

where

O
<

~ Yo 7
pu— 7’ C p— 7’ C pu— 7’
0 270 + Bo " a " a

and S;, i =1to 4, T;, j =1to 10, Hy, Hy are shown in Appendix.
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2.6. Thermophoretic velocity and force

The drag force exerted on the cylindrical particle embedded in a micropolar
fluid is given as

2m
2.50 F= [[p(ll,,cos6 —1l,9sin6)]|,—1 db.
PP p p
0

Substituting II,, and Il in Eq. (2.50), we get an expression for the drag
force

(2.51) F = —m (Al — CS1Cs — ESy(r) .

Since the cylindrical particle remains suspended freely in the micropolar fluid,
the drag force F' must vanish under a thermal gradient. Hence

(2.52) Als — CS1¢s — ESolr = 0.

Using Eq. (2.52)), we get the thermophoretic velocity of the cylindrical particle,
which is:

Ce9 + C70 + Cr1 + Cr2 + (73 + Cra + (75
Cr6 +Crr+Crs+Cro+Co+Go1

Also by substituting Uy = 0 in Eq. (2.51]), we get the thermophoretic force given
as:

(2.53) Ur=27

Ge9 + C70 + G71 + Cr2 + (73 + Gra + C75.

2.54 Fr=7rm
(2:54) r (g2 + (83 + (a4 + (85 + (86 + (87

The expressions for normalized thermophoretic velocity and force are de-
fined as:

Ur
2.55 Up=— 1
(2.55) T u(+x)CsZ
(2.56) F: L

T2 (14 X)22
where S;, i = 1 to 6, and (,,, m = 1 to 87 are presented in Appendix.

Some specific cases

Case I: When a medium is the porous medium saturated viscous fluid. If
x = 0, ie, (kp = 0, Ay = 1, Ay — 00), the thermophoretic velocity and
force are given as:
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S5(Cy03 + CrnChdz ),
((1+2C)nSs + (Cru® + 4(1 + 2C,))S5)

(1 +2Cm)nSs + (Crun® + 4(1 + 2C1)) S5)
(14 2C)nSs + CpunSs)

These results agree with the results of FALTAS and RAGAB |21].

(2.57) Up = 4uZ

(2.58) Fr = npUpn?

Case II: When the particle embedded in the Newtonian fluid, i.e., k1 — oo, and
x — 0, Egs. (2.57)) and (2.58)) reduce to:

(2.59) Ur = uz (Cs03 + CmCilch)cSl ’
C(1 +2C,)
(1 +2C,,
(2.60) Fy = mpup L 2Cm).

The above results are matches with the work of CHANG and KEH [10].

Subcase I: When the thermal stress slip parameter vanishes, i.e., C, — 0,

Egs. (2.59)—(2.60) transform to:

(2.61) Ur = NZL?’(SH,
Cs(1+2Cy,)
o(1+2Cn
(2.62) Fr = nuup S0 20m)

The expressions are the same as the results of KEH and TU [9).

3. Numerical results and their analysis

This study presents the thermophoretic movement of a solid cylinder within
a porous medium composed of micropolar fluid. In this study, we have de-
rived explicit expressions for thermal distributions, thermophoretic velocity, and
thermophoretic force. In this section, we visualize the effects of several param-
eters, such as micropolarity, permeability, thermal conductivity, and slip pa-
rameters, on thermophoretic velocity and force. In our analysis, we utilized the
available data for several coefficients: thermal jump (C; = 2.18), frictional slip
(Cy, = 1.14), thermal creep (Cs = 1.17), spin slip (C,, = 1.2), and gyroviscosity
coefficients (yo/pa® = 0.3, Bo/pa® = 0.2) |46, [49].

The variation of the thermophoretic velocity and thermophoretic force is
shown graphically in Figs. with the following parameters:

1. Knudsen number (0.01 < K,, < 1) |20, 21].
2. Thermal conductivity ratio (0 < k < o0) |20, 21].
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Micropolarity parameter (0 < x < o) [29].

Permeability (0 < k; < oo) [20} 48].

Frictional slip parameter (0 < Cp, < o0) , .

Thermal stress slip parameter (0 < Cj, < 00) |21].

Microrotation thermal conductivity parameter (0 < au/a® < o) |29].
Thermal jump parameter (0 < C; < 00).

PO N O W

3.1. Thermophoretic velocity

The thermophoretic velocity indicates the motion of a particle from hot regions
to cold regions, suspended in a fluid under the impact of a thermal gradient.

Figure [2] illustrates the variation of the normalized thermophoretic veloc-
ity Up versus the Knudsen number for different values of the thermal con-
ductivity ratio and micropolarity parameters. Generally, the graph shows that
U7 decreases steadily as the Knudsen number increases. Additionally, the ther-
mophoretic velocity declines with an rise in the thermal conductivity ratio. This
mechanism occurs because a higher thermal conductivity of the particle reduces
the local temperature gradient at its surface. For various values of the Knudsen
number K, and the thermal conductivity ratio %k, the thermophoretic velocity
decreases as the micropolarity parameter increases. This reduction is due to the
fact that the thickness of a micropolar fluid is higher than that of the Newtonian
fluid, leading to a decrease in particle velocity.

FIG. 2. Variation of Uj versus K, when au/a®> = 0.2, C, =1, k; = 0.01.

Figure [3] shows the influence of increasing viscous slip and thermal stress
slip parameters on the thermophoretic velocity versus the Knudsen number.
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0.05

0.04 1

0.02 1

0.01 T+

0.00 + .

Fic. 3. Variation of Uj versus K, when k=1, x = 3, au/a®* = 0.2, k; = 0.01.

The graph reveals that the thermophoretic velocity reduces as the frictional slip
parameter enhances, while it tends to increase with a rise in the thermal stress
slip parameter. Notably, the effect of the thermal stress slip parameter on velocity
remains consistent, when the frictional slip parameter is zero.

Figure [ reveals the relationship between the thermophoretic velocity and
the micropolarity parameter for numerous values of the Knudsen number
and the thermal stress slip parameter. As depicted, the velocity consistently

0.14 1
0.12 4
0.10 1

%, 0.08 1
0.06 1
0.04

0.02 1

0.00 + . .

FIG. 4. Variation of U versus x when k =1, apu/a® = 0.1, k; = 0.01.
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decreases with a rise in the micropolarity parameter, while the other parame-
ters are held constant. This reduction occurs because the increasing thickness
of the medium reduces thermophoretic mobility. Additionally, the plots show
that U7 decreases as the Knudsen number increases. The influence of the ther-
mal stress slip parameter on the thermophoretic velocity is also evident in this
graph, indicating that there is no effect on the velocity when the Knudsen num-
ber approaches to zero.

The variation of thermophoretic velocity versus the Knudsen number is pre-
sented in Fig. 5| As the thermal conductivity ratio increases (indicating a rise
in the particle thermal conductivity), the normalized velocity decreases in the
entire range of the Knudsen number. This happens because higher thermal con-
ductivity of the particle reduces the local temperature gradient at its surface.
However, for the case where the thermal conductivity ratio becomes very large,
we see that the thermophoretic velocity increases with the Knudsen number.
In this graph, it is also interesting to note that the thermophoretic velocity
decreases for a higher microrotation thermal conductivity parameter.

0.16
—_— k=0.1
0.14 1 i
- =3
..... k-

2=0.2
Glie au/a® =0

o JYES

Fic. 5. Variation of Uy versus K, when C;, =0, x =2, k1 = 0.01.

Figures illustrate the variation of thermophoretic velocity versus per-
meability for different parameters, including the thermal conductivity ratio,
viscous slip parameter, Knudsen number, and temperature jump parameter.
Figure [0] shows that thermophoretic velocity increases with higher permeabi-
lity. Lower permeability indicates that frictional forces dominate over inertial
forces, suggesting that the medium is more porous. Conversely, higher permeabil-
ity means that inertial forces dominate, indicating a clear fluid. Thus, as perme-
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ability rises, the thermophoretic velocity also increases. Additionally, it is impor-
tant to note that as the thermal conductivity ratio increases, the thermophoretic
velocity decreases. The reason for the consequence is explained earlier. Figure [7]
depicts the impact of the frictional slip parameter on the thermophoretic ve-
locity. The graph demonstrates that the velocity Ur rises as the frictional slip
parameter decreases. A reduction in the slip parameter leads to an increase in the

0.200

0.175 1

0.150 +

*1.0.100
]
0.075 +

0.050

F1G. 7. Variation of U} versus k; when k=1, K,, = 0.2, Cy = 2, ap/a® = 0.1.



666 S. NisHAD, K. P. MADASU
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FiG. 8. Variation of U versus k; when C, =2, k=1, apu/a® = 0.1.

mobility of the particles within the fluid medium. Figure [§] depicts the impact of
the increasing Knudsen number on the thermophoretic velocity. The graph shows
that as the Knudsen number increases, the velocity decreases. Figure [J] presents
the impact of the temperature jump parameter on the thermophoretic velocity.
This indicates that UT increases monotonically with a higher temperature jump
parameter.

0.10 1

0.08

0.06 -

0.04

0.02

0.00

Fic. 9. Variation of Up versus k; when k=1, K, = 0.2, Cp, = 2, oz,u/a2 =0.1.
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3.2. Thermophoretic force

The thermophoretic force arises when particles move in a fluid due to a ther-
mal gradient. The magnitude of this force depends on the strength of the
temperature gradient as well as the physical characteristics of the particles and
the surrounding fluid.

The graphical representation of the normalized thermophoretic force as a func-
tion of the Knudsen number is shown in Fig. 10| for diverse values of the thermal
stress slip and micropolarity parameters. The thermophoretic force consistently
increases, throughout the entire range of the Knudsen number. Additionally, this
force rises with an increase in the thermal stress slip parameter. It is important
to note that the change in the thermophoretic force is less significant in microp-
olar fluids compared to viscous fluids, primarily due to the greater thickness of
the micropolar fluid.

F1G. 10. Variation of Fj versus K, when k = 1, ap/a® = 0.1, k1 = 1.

Figure presents that the thermophoretic force decreases as the thermal
conductivity ratio and micropolarity parameters increase. This trend may be
explained by the fact that the higher thermal conductivity of the particle reduces
the thermal gradient at its surface across various values of the Knudsen number.
Additionally, we observe that the thermophoretic force declines as the Knudsen
number decreases. From this graph, we can conclude that the thermophoretic
force is a decreasing function of the thermal conductivity ratio and micropolarity
parameters, while it is an increasing function of the Knudsen number.
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FiG. 11. Variation of Fij versus k when Cj, = 2, apu/a®> = 0.1, k1 = 0.01.

Figure demonstrates that the thermophoretic force decreases across the
entire range of the micropolarity parameter for various values of the viscous slip
parameter and thermal conductivity ratio. A rise in the micropolarity parame-
ter indicates more significant microstructural effects than those observed in the
Newtonian fluid, leading to greater resistance for fluid flow due to microrota-
tional viscosity. Consequently, the thermophoretic force decreases. Additionally,

30

25+

10 A

F1G. 12. Variation of Fj versus x when C = 0, K,, = 0.2, ap/a®> = 0.2, k1 = 0.01.
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it is observed that the thermophoretic force is a decreasing function of both the
frictional slip parameter and thermal conductivity ratio.

Figures |13 represent the variation of the thermophoretic force versus the
permeability for different parameters such as the thermal conductivity ratio,
frictional slip parameter, and Knudsen number. From these figures, we observe
that as permeability increases, the thermophoretic force decreases. Figure

16
— k=0.1
14 1 L
— k=2

F1G. 13. Variation of F7}: versus k1 when K,, = 0.2, Cj, = 2, oz,u/a2 =0.

8 ~
— Cp=0.1
7 -—- Cp=03
—-= €,=05
64 TN e Cn=1.0
59 X =0

Fic. 14. Variation of Fr versus k1 when k=1, K,, = 0.2, C, = 2, ozu/a2 =0.1.



670 S. NisHAD, K. P. MADASU

shows the impact of the thermal conductivity ratio on the thermophoretic force,
showing a decline in the force as the thermal conductivity ratio increases. In
Fig. the variation of the thermophoretic force with respect to the permeabil-
ity is presented. The graph illustrates that the thermophoretic force decreases
as the frictional slip parameter increases. Significantly, the force is greatest when
the frictional slip parameter is low. A graphical representation of the force versus
permeability is shown in Fig. [I5] This graph shows that the thermophoretic force
increases as the Knudsen number increases.

25

— K;,=0.1

FIG. 15. Variation of Fif versus k1 when k = 1, Cj, = 2, ap/a® = 0.1.

4. Conclusions

In this study, we investigate the migration of a cylindrical particle normal to
its axis in micropolar porous media under a uniform temperature gradient. The
governing equations for fluid motion and heat transfer in this two-dimensional
problem are solved analytically, accounting for thermal jump, heat flux continu-
ity, viscous slip, thermal creep, thermal stress slip, and microrotation slip con-
ditions. The thermophoretic velocity and force have been calculated for various
values of the Knudsen number, permeability, micropolarity parameter, thermal
conductivity ratio of the particle to the medium, microrotation thermal conduc-
tivity parameter, and hydrodynamic slip parameters. It is observed that both
the thermophoretic velocity and the force decrease as the micropolarity param-
eter and microrotation thermal conductivity parameter increase. Additionally,
the thermophoretic velocity increases with higher permeability, while the ther-



THERMOPHORESIS OF A CYLINDRICAL PARTICLE EMBEDDED. . . 671

mophoretic force decreases with both higher permeability and thermal conduc-
tivity of the particle. Furthermore, it is noted that the thermophoretic velocity
and force exhibit greater variation when the thermal stress slip parameter is
non-zero, and the frictional slip parameter is zero.

Our findings indicate a well agreement with previously published results re-
garding Brinkman media and viscous fluids (with and without thermal stress
slip). The problems of thermophoretic motion of circular solid cylinders are fun-
damental in many scientific and engineering sectors, such as fouling of com-
bustion engine walls, modified chemical vapour deposition process, gas filtra-
tion, and electromagnetic chip production. Considering thermophoretic motion
of various geometries such as deformed sphere, deformed cylinder, and spheroid
in an unbounded micropolar fluid through an isotropic porous medium under-
going chemical reaction, Brownian motion, photophoresis and magnetic effects
are future aspects. Additionally, the research should be extended to investi-
gate thermophoretic migration of aerosol particles in spherical and cylindrical
cavities, as well as in microtubes filled with Brinkman micropolar fluid, cou-
ple stress fluid, and other non-Newtonian fluids with a nonuniform tempera-
ture gradient.

Appendix
The expressions mentioned in Egs. (2.47)—(2.49), and Egs. (2.53)—(2.54)) are:
S1 = Ki(A1), Sy = Ki(A2),
S3 = Ko(A1), S1 = Ko(A2),
S5 = Ki(n), Se = Ko(n),
. 20,0
Hy = (Cy + 20 Ch), Hy = —ﬁ,
0
X 2
3= (A1 +4)51 + 2\ S5, 1= JrX(fl A1)S1,
Hs = (A3 +4)S2 + 2X25), Hg = %(52 — A3)S2,
+X
~ 2
T =1+ 4C,,, TQZ%@a
Y3 = H3 — Hy, T4=%,
2
T5=%, T = Hs — Hg,
T, = A5 Te =2+,

4
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TQ = 51(51(1 + C~n) - yOCNn(Sl - )‘153))7
Y10 = &(S2(1 + Cn) — JoCn(S2 — A2S4)),

G =C+1, CG=Cy—1,
C’ta «
43_77 <4_§7
G =(1+x)n% G = XAT + AT — XT&,
C7=X)\§+)\3—X7£2,

(s = (H1+ Cy) (kG 4+ 1)YsYo((s + (7),

Co = HaS1k(C2 + €1)(6 Y7 Y s,

C1o = H251(2¢ + kC2G5) Y7 Vs,

Ci1 = HaS1(kG1 4+ 2)(5 Y7 s,

Ci2 = HaS1k(C2 + €1)C6 5T s,

Ci3 = H251(2¢6 + k(2(5) Y5 Ys,
Cia = HaS1 (k¢ +2)(5 5T s,
C15 = (kC2Cr + kC1(r 4 207 + k(al5) T4 Ty,
C16 = (Cs(kC1 4 2)(5Y4) Ts,
C17 = 2H25((2 + (1)¢7 L2 s,
C18 = H259(2¢7 + k(a(s + kC1Cs + 2¢5) T2 Ty,
Cio = (H1 + S1) (kG2 + 1)Y10Ys(¢5 + Co),
Goo = (Hy — S1)H25152(C4 + kC3)Ys,
Co1 = CeS2 + (582 — (&1 — G560,
o2 = (kC2Ce + kC1Ge + 2G6 + kCaC5) T,
Go3 = S1(kC1 +2)( Y6 — S2k(Ca + C1)¢7 Y3,
Goa = (2C7 + ka5 + k1G5 + 2G5) Y3,
Co5 = S152(kCaCr + kCi(r + 2¢7 — k(2G) Y1,
Co6 = S2k(1T1 + 259 1 — Syk(Co + (1) A2,
Gor = (2€6 + ka5 + k(1G5 + 2(5) Az,
Cog = (kCal7 + kC1C7 + 2¢7 + kCals) A1,
C29 = S3kC1(5A1 + 253Cs A1 + S1kC2(7 + S1kCi1(7,
C30 = 2¢7 — k(206 — kC1G6 — 2G,
C31 = (k1 + 1)¢5(Cs Y7 + CpCra Y5) T o,
(32 = (G4 + k(3)(5£2 T8 Yy,
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(33 = (kC1 + 1) Y6 Yo,
C34 = (kC1 + 1)(S2¢7T1 + Sa¢5A2) Yo,
= (kG +1)(¢7 + 2¢5) Yo,
C36 (G4 + k(C3)C561 T8,
37 = Cs Y7+ CrnCy Y5,
C3g = (kC1 + 1) Y104 Ts,
(30 = H252(Ca + k(3)(562 4T,
Cao = (kC1 +1)(5T10 T2 s,
Ca1 = H252(Cs + k(3)(5€2 T2 s,
Ca2 = H151(Ca + kC3)(561 T2 s,
Ca3 = H2S1(C + k¢3)¢561 Y,
Caa = C5((kCL + 1)Y10 + H2S5262(Ca + kC3)) Y3,
Cas = (k¢ +1)(S1¢6T1 + S3¢5A1) Y10,
C46 (k1 +1)(Ce + 2¢5) Y10,
= (Ca + kC3)(C6&2 — C7€1) Y1,
C48 (Ca + kC3)(S3¢5 M1 + S1G6)&2,
Ca9 = (Ca + k(3)(5(25282 — S1r261),
Cs0 = (Ca + kC3)(¢r + 2¢5)¢a,
(1 = (CsY7 + CLC T5) s Yy,
Cr2 = H152(Ca + k(3)&2Ts,
(53 = 2Cm (kG + 1) Y6 Yo + (oo,
Csa = (kC1 +1)(S2Y1 — S42) Yy,
Cs5 = CsH2581(Ca + k(3)&1T7 s,
Cs6 = S2(kC1 +1)T9 — (55,
Cs7 = H251(Ca + k(3)61 5T s,
Css = (kC1 +1)T10T4Ys,
Cs9 = H2S2(C4 + k(3)&2T4 Ty,
G0 = (k¢ +1)T10T2Ts,
Co1 = H2S2(Ca + k(3)2 T2 Y,
Co2 = (Ca + k(3)€1T107s,
C63 = H2S1(Ca + k(3)&1 Y6 — (k¢ +1)T107T3,
Coa = CrH2S2(Ca + kC3)€Y5 — S1 (k¢ + 1)T1 T,
Cos = (kC1 + 1)(S3A1 + S1) Y10,
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Co6 = H25152(Ca + kC3)(&2 — &1) Y1,
Co7 = (C4 + kC3)(S3A1 + S1)&o,

Cos = (Ca + KkC3)(SaA2 + S2)&1,

Co9 = S2(s — 2Cs(Co + 10 + C11)s

(0 = —2CmCh(Ci2 + 13 + C1a),

(r1 = 2H255(CsCis + i) + CrCrk(as,
Cr2 = 2CCrlio — S1Co0 + (2122,

(73 = 20 Ha(S1G22 + Cos — SaCaa),
74 = 2H2(5152C25 — S1C6Ca6 + S4(27),
(75 = —2H252(S3Cs + C29 + S1C30),
Cr6 = 2(Caa — C31 + CinCss) + H1S2(ss,
Cr7 = 2(S2@35 + CsC38 — H251(36(37),
(s = 2(CsC39 + CrnCirlao + CmCiiar),
Cro = 2CmCas — H1S1Ca2 — 200 (aa,
Cso = —2(Ca5 + S1Ca6 + H25152Cu7),
Cs1 = 2H2(S152C50 — S2Cas — S1Ca9),
Cs2 = (53 — 2(kC1 + 1)1,

Cs3 = 2(¢s56 — C54),

(84 = 2(CsCs + CsCss — CrnCisr),
(85 = 2CmCh(Ceo + Co1) — H1S1Ce2,
Cs6 = 2(Crmles — Coa — Cos),

Cs7 = 2(Co6 — H252¢67 + H251(6s)-
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