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Planar plasma source and a floating wall
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THE DEBYE SHEATH THAT FORMS AT THE PLASMA-WALL INTERFACE is discussed by
means of the one dimensional collisionless kinetic model. We pay special attention
to the simplification often adopted both in theoretical descriptions and numerical
simulations, treating the wall as a perfect absorber. We show that this assumption,
although it greatly simplifies the considerations, is too restrictive from the physical
point of view as it leads to an overdetermined problem. This becomes somewhat un-
derstandable if we notice that this assumption does not allow for taking into account
any properties of the wall.
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1. Introduction

THE DEBYE SHEATH, BEING AN INTERFACE between plasma and a floating
wall, is characterized by substantial deviations from quasineutrality. The sheath
is formed due to disparities between electron and ion masses (m. < m;) and
possible temperature differences (T, > T;), such that at the initial stage there
exists prevalence of electron over ion incident fluxes towards the wall and the
negative charge starts accumulating inside the wall and on its surface. This
induces an electric field that accelerates ions and repels electrons to maintain
current balance of the charged particles. It is often assumed |1H4] that, at equi-
librium, when stationary conditions are achieved, the wall acts as a perfect ab-
sorber. The perfect absorber assumption means that the electric field increases
(i.e., negative wall charge accumulates) until the charge flux of incident elec-
trons exactly balances the charge flux of ions bombarding the wall. Then, as
a result of three-body collisions (ion-electron-wall), the charge flux is neutral-
ized and the particles leave the wall as neutrals. One can imagine that even
if some ions bounce off the wall they become trapped by the electric field and
retain near the wall until they recombine with electrons that, in the presence
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of the repelling electric field, are expected to reach the wall with reduced flux
and energy and thus decreasing the probability of electron backscattering to
plasma. However, it appears that in case of a perfect absorber, the electric field,
and consequently the surface density of absorbed electrons, is uniquely deter-
mined by the efficiency of the plasma source and the distance L between the
source and the wall. So, it does not depend on the material of the wall or
its temperature, which seems unlikely. In other words, assuming an ideal ab-
sorber makes the problem overdetermined. For example, by heating the wall,
one should be able to reduce the number of electrons absorbed and consequently
the wall electric field Er. If we accept the point of view that we have some
control over the absorbing properties of the wall, then a solution representing
the electrical structure of the sheath should exist for a specified a priori not
only source efficiency and the domain size L but also for the prescribed arbi-
trarily electric field Ej at the wall surface. The perfect absorber assumption
does not offer such a possibility, hence it is very restrictive. It becomes clear
that to avoid these limitations one must allow that at equilibrium, when the
solution has reached the steady-state, some electrons may still be reflected from
the wall and return to plasma. The problem of inadequacy of the perfect ab-
sorber assumption is also discussed by BRONOLD et al. [5]. It was noticed that
even if the assumption of a perfect absorber was indeed fulfilled in the final
state, it cannot describe well the process of reaching this state, causing, for ex-
ample, inaccuracies in the estimation of the sheath formation time. It seems
reasonable to distinct the perfect absorber approximation as a wall property
and as a final state. As a wall property it simply implies no emission of electric
charge from the surface (including reflection) at any point of time. Whereas the
perfect absorber approximation as a final state implies that when the sheath
is finally formed the incident fluxes of charged electrons and ions balance each
other.

Unlike the work by BRONOLD et al. |5], that focuses on the processes inside
and in the vicinity of the wall together with the dynamics of the charge build-up,
we intend to show another issue of the perfect absorber approximation, without
going into details about the physics of intricate interactions |6, 7| of the plasma
particles with the wall. In particular, we aim to emphasize that the plasma-wall
problem with stated:

e geometry (size),
e plasma source properties,
e electric field at the wall boundary

becomes overspecified if we additionally assume the wall to be a perfect absorber.
Let us consider a thin planar plasma source located at y € [—¢, ] in the middle
between two parallel walls, located at y = —L and y = L (see Fig. [1)). Due to
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F1Gc. 1. Problem statement.

evident symmetry we further consider only a half of the problem domain (the one
with positive y).

The source produces electrons and ions at the same rate but also transfers
additional energy to plasma particles crossing it. Interaction of plasma with the
wall, macroscopically, can be characterized by accumulation of certain charge at
its surface with the flux balance for the charged particles at the wall |5, 3]:

an® ) S
(1.1&) djf = Sere,inc - ;e - arwnz( )ngS)v
dn(S) n(S) g
(11b) d; = Siri,inc - 71_1 - aT’wnz( )nES)’
where ngs), ngs) are particle surface densities, I'c jnc, I'i inc — incident fluxes, s, s;

— sticking coefficients, 7, 7; — desorption times of electrons and ions, correspond-
ingly, and «,, — wall recombination constant. In the above equation and onward
we assume singly charged ions. For the steady-state scenario the left-hand side
of Eq. vanishes. For simplicity, we additionally assume immediate recom-
bination at the wall, i.e., .y — 00. As much more mobile electrons (m. < m;)
are expected to initially enter the wall at the higher rate, there should be excess
of negative charge inside it. This, together with the assumed immediate recom-
bination, implies ngs) = 0. Thus, subtracting Eq. from Eq. gives
the surface number density of electrons at the wall

(1.2) nés) = Te(sere,inc - Siri,mc)-

Given the surface charge density o, = —engs) the electric field is Ef, = —oy,/¢0.
It can be inferred from Eq. ([1.2]) that the electric field is determined by prop-
erties of the wall that depend on the choice of material. Moreover, Ey, can be

also controlled by modifying operating conditions, e.g., the wall can be heated
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up to induce thermionic emission, as applied in emissive Langmuir probes [9], or
even subjected to light to induce photoemission [10]. This means that, in prin-
ciple, the wall electric field can be chosen “arbitrarily” and therefore it seems
that the problem can be indeed characterized by: the domain size L; properties
of the plasma source; the electric field at the wall Ep,.

The arbitrariness of the boundary electric field means that we can imagine
a situation in which the wall remains completely neutral (i.e., E;, = 0). In Sec-
tion [3| we show that this scenario is inconsistent with the assumption of the per-
fect absorber. To illustrate this, we specify the wall properties in such a way that
some fraction of incident electrons, n = 1— s, is backscattered from the wall. For
simplicity, n does not depend on the incident particle’s energy. It is evident that
the perfectly absorbing wall corresponds to 7 = 0. We show that only a trivial
solution exists for n = 0 and Ej, = 0. In Section 4] we show that the assumption
of the perfectly absorbing wall leads to rigidity of the problem and cannot be
met in general if L, the source properties and Ej, are set arbitrarily. A solution
exists only if L is strongly correlated with E. The situation changes if we allow
for possibility of some electrons to backscatter and return to the plasma (n > 0).
Then, the solution exists for “arbitrary” values of L, source properties and Ef,.

One should keep in mind that the energy independent coefficient of elastic
backscattering, 7, is just a simplification. For example, Monte Carlo simulations
of Polytetrafluoroethylene (PTFE, also known as Teflon) surface bombarded
with the monoenergetic electron beam [11] show that the coefficient of elastic
backscattering rapidly grows from 0 above 0.8 within the incident electrons’ en-
ergy range from 0 to 8eV. The coefficient exponentially decreases with a further
increase of the energy. In addition, the coefficient depends on the electron an-
gle of incidence [12|. One should also remember about emission of secondary
electrons.

For convenience, we further simplify the discussed problem by setting the
half-width of the source region to ¢ — 0 and assume L to be small enough
(or the plasma to be sparse enough) so that collisions can be neglected. This
approach allows to describe both electrons and ions fully kinetically and was
already used by some authors in theoretical and numerical considerations of the
Debye sheath [13-17].

It is worth to point out that by constricting the source region to the singular
plane and treating the collisionless plasma using fully kinetic description we, to
some degree, circumvent a commonly used approach that describes the plasma-
wall transition by means of a two-scale analysis [18] that separates the problem
into two distinct regions: a collisional quasineutral plasma presheath (character-
ized by negligible growth of electric field towards the wall) and the collisionless
sheath (characterized by strong deviation from quasineutrality and, therefore,
the electric field is much larger compared to the quasineutral region). In the



PLANAR PLASMA SOURCE AND A FLOATING WALL 599

frame of the two-scale analysis it was shown by BoHM [19] that the existence of
the collisionless sheath region requires ions to be pre-accelerated in the presheath
to at least ion acoustic speed (V; > Cs = \/kT./m;). In the approach discussed
by us there are no limitations on the ion velocity entering the collisionless region
but, as it is shown later, in situations where the source-collector separation L
is much larger than the Debye length A\p and the source ion velocity does not
exceed the ion acoustic one Vo < Cj there are two distinct (“source”” and “wall”)
sheaths and ions within the “source” sheath are accelerated substantially above
the ion acoustic velocity, eliminating the need for the presheath (as was pointed
out by SCHWAGER and BIRDSALL |13]). Thus, it can be summarized that in our
considerations the particles are produced in the (singular) source region but
ions are accelerated above ion acoustic velocities in the collisionless region be-
tween the source and the wall, whereas in the standard two-scale analysis both
the phenomena occur within the collisional quasineutral presheath region. Of
course, quantitatively the potential drop of collisional plasma in contact with
a floating wall would be different from what we describe in the present pa-
per, but qualitatively the wall sheath should be quite similar as it is formed
by the same mechanism. Historically, the approach used in [13| (the one we
rely on) is based on a plane-diode model used in the analysis of a single-ended
Q-machine by KUHN [20]. One of the operating regimes of the apparatus is
characterized by the monotonic potential drop with the two distinct source and
collector sheaths.

The paper is organized as follows. In Section [2f we introduce in greater detail
the collisionless plasma source-wall model which is used in later considerations.
In Section [3] we consider the Gedankenexperiment that describes a quite artifi-
cial, from the physical point of view, scenario in which the electric field at the
wall is kept zero, so the wall does not absorb electrons. However, it is assumed
that recombination takes place. In Section [4| we show that the perfect absorber
approximation makes the problem overspecified and the assumption cannot be
met in general for stated source-wall separation L and the arbitrarily chosen
electric field E'. It appears that every L is paired to fixed Er. The possibility to
have arbitrary Ep, is regained only after allowing for emission of electrons from
the wall. Some brief considerations regarding over-determination of the sheath
problem in the presence of collisions are discussed in Section 5] Section [6]contains
concluding remarks on the results.

2. The model

The statement of the problem can be described as follows:

1. Plane-symmetric domain y € [—L, L], with the symmetry plane y =0 bounded
by walls at y = —L and y = L.
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2. Monotonic potential drop from the symmetry plane to the wall.
3. A planar plasma source located at the symmetry plane within a narrow region
y € [—¢e,e],e = 0:

(a) the source produces equal fluxes of electrons and ions I'; = I'¢q,
(b) distribution function of the produced ions entering the domain is known
fi(v) = n;fi(v), where f; is the velocity distribution function such that
+0o0
ffoo filv)dv =1,
(c) velocity distribution function of electrons entering the domain is known

fe(v).
4. The wall properties are specified, with regard to particles’ interactions at the
wall. In particular, we assume:

(a) incident ions entering the wall do not leave it and recombine with elec-
trons,

(b) incident electrons are partially backscattered without energy losses (in
fact, reflected). We assume the probability of backscattering to be inde-
pendent of the electron’s energy and being equal to 1. If fe ine(v) is the
velocity distribution function of the incident electrons, then the velocity
distribution function of backscattered electrons is fea(v) = feine(—v).
The flux of reflected electrons is I'ey = nl'c ine.

5. Returned back electrons gain some extra energy while crossing the symmetry
plane (source region) fj;o V2 fez(v)dv > fjozo v? feo(v) dv. Of course, their
flux after crossing the symmetry plane is the same I'c3 = I'co. For sim-
plicity, we assume the particles to acquire the energy in a way that their
velocity distribution function is equal to that of the source electrons feg = fe1.

We are looking for possibility of getting monotonically decreasing potential
in the region between the source and the wall. As the region is assumed to be
collisionless the motion of particles is characterized by a constant of motion
qp + m2”2 = const. Under the circumstances, all the ions produced at the source
reach the wall. Source electrons with energy below —ep, return back. The same
goes for electrons that enter the region from the opposite side of the source
plane I'.3. The combined flux of returned particles I'eo as well as the previously
mentioned electron fluxes (I'c; and I'e3) vary along normal to the wall (their total
flux, however, remains constant). Electrons with sufficiently large energy reach
the wall and, as we have set previously, partially recombine with the incident
ions while the excess of incident electrons I'ey = I'; — (I'e1 +T'e3) |y=1, is backscat-
tered elastically (in 1D case backscattering is equivalent to specular reflection).
At the same time, the total flux balance is T'ea(y) + Teq = T'; — (Te1(y) + Tes(y)),
where the left-hand side contains particles that move in negative direction, while
the right-hand side includes particles that move in positive direction. The total
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flux is constant everywhere (steady-state problem). It was previously mentioned
that the returned particles gain some energy in the source region, such that their
energy spectrum becomes identical to the source particles. This is because the
flux of returned particles should be on average accelerated when passing through
the source region in order to be able to cross the source-wall potential barrier
at the opposite half of the problem. Otherwise, there would be constant accu-
mulation of particles in the region.

For simplicity, we assume the source to produce particles with half-Maxwel-
lian velocity distributions. Taking into account the above considerations the ion
distribution function is simply

1/2 2
' o M _mut e s
(2.1) f;(p,v) = n; <27rk‘T¢> exp ( AT, k‘TZ)H(U Vie(©)),

where v;c = \/—2ep/m, is the ion cut-off velocity. The total electron distribution
function is the sum of cut-half-Maxwellians and at arbitrary point y(¢) can be
written as

(22)  fe(p,v)
2

1/2
— m* Me e _mev B -
—”e(mn) eXp(kTe %T)[H(“ vee(10)) + 1H (vec(p) = v)],

where n} — some constant to be found, measured in units of number density, ve. =
—/2e(¢ — pr)/me — electron cut-off velocity, H — the Heaviside step function,
7 can be interpreted as the ratio of incident to backscattered electron fluxes. It is
clear that the first term in square brackets corresponds to electron components
with subscripts el, €2, €3, while the second to e4. Moments of the distribution
functions give macroscopic parameters of ions and electrons that can be used with
the Poisson equation, parametrized for an electric potential being the argument

E— _d¢ dy _ _ 1

- Y de — T E>
(23) dE _ p OV dAED 2
dy €’ dp = eo”

By assuming all the variables that correspond to the particle production to
be known (in particular, I';(m;, T;, n}), T.) it is possible to obtain the electron
density constant n} from the flux balance

(24) Pe(”:agpLan) = PZ

Moreover, using the fact that all the macroscopic variables are defined in terms of
electric potential, it becomes possible to integrate Eq. (2.3) to obtain a (closed)
system that consists of two equations, namely:
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definition of the electric field at the wall

PL
2e

P (ne(p, r,m) — ni(e)) de,
0 0

2.5a E? =0
(2.5a) T

definition of the distance between the source and the wall
©r ®

e r=- (2 [t onm) - ni<¢>>d¢)_l/2 do.
0 0

€0

The explicitly written arguments in system of Eq. represent independent
variables (1, 1) and variables of integration (¢ and ). It is clear that for
a specified distance between the source and the wall L and the fact that £ =0
the system of two equations has two unknowns ¢y, 17 and is thus closed.

For the sake of convenience we introduce dimensionless variables 7 = T, /T;,
w=m;/me, v = ep/(kT.). Since the particle production is kept constant and
for the Maxwellian source being equal to I'; = 0.5n] (|vy,|) = 0.5n)\/2kT; /(7mm;)
we additionally introduce v = n/n} and u = v/(|viy|), so that the normalized
total production (in both directions) is equal to unity with normalized fluxes

y = T/(2ry).
Normalized distribution functions become

~ 1 u?

(2.6) fi(,u) = —exp | — — — 7 | H(u — ),
T T
where u;. = /—77Y and
< 1n: 1 u?
(27) fe(wv u, Y, 77) = - —=€Xp Y- — [H(u - uec) + nH(uec - u)] s
T NS /T TUT

where ue. = —y/mut(¢ — ). The ratio of the source ion density and the elec-

trons density constant can be obtained from the flux balance using first moments
of the distribution functions v; = 0.5 and 7. = 0.5(1 — n)n’/nf/utexp (¢r.),
giving

(2.8) ng 1 exp(=¢r)
' nf  Jpr 1—n

Zero’s moments of the distribution functions give normalized densities:

(2.9) vi(¢) = % exp (—7v) erfer/—T7,

R10) () = e (4~ )| o —erfe/T

S
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System of Eqgs. (2.5]) is rewritten by introducing dimensionless variables v =

y/Ap and € = ,}%e, where X}, = \/eokTe/(nfe?) — is the Debye length of the

source plasma, yielding:

(2.11a) () = —2 / Wil — vty b)) o,

(2.11b) UL(wL,n

0
)= —7“”
RVARICRIN

where ¢2 in Eq. (2.11D)) is the normalized electric field (squared) at the arbitrary
point, which is equivalent to Eq. (2.11a]) with the upper limit of density integrals
being the normalized potential 1):

(2.12) 7 (1) dip = 1T (exp( ) erfor/—70 + W - 1),
0

(2.13) 7 ve(¥,vr,n) dip = 2\/}[ exp (¢ — 1) (277 - erfcﬂ)
0

o (o) (2~ rfer/ )y £ )+ -],

and the normalized ion-density integral in Eq. (2.11al) is obviously equal to
Eq. (2.12) with the upper limit being 7, while the normalized electron den-
sity integral can be simplified to

2/p1 |1

+exp (=) erfer/ =¥ + 4/ —%¢L — 1] .

Given the mass ratio of the particles p and the ratio of the source temper-
atures 7 system of Egs. becomes closed for the specified “length” vy, and
wall charge (“electric field” £1). For convenience, the dimensionless variables are
summarized in Table [Il

Pr,
(2.14) / V(b ) dpp = e |2 (1= exp (—)
0
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TABLE 1. Relations between dimensional and dimensionless variables.

Dimensionless variable Definition
Ton-to-electron mass ratio W=m;/me
Ion-to-electron temperature ratio | 7 = Te /T;
Density of species « Vo = Na /1§
Flux of species o Yo =Ta/(21) =Ta/(n] (Jviyl))
Velocity of species « Ua = Va/{|Viy)
Spatial y-coordinate v=y/\p
Electric potential P =ep/(kTe)
Electric field & =eEXp/(kTe)

3. Uncharged wall scenario

As mentioned before, expecting the wall charge to be capable of taking “arbi-
trary” values, we start from an extreme artificial case of the completely uncharged
wall. Then, the adequacy of the zero wall charge scenario against the previously
introduced weak perfect absorber approximation can be tested in the frame of
the discussed model. Let us recall that the weak perfect absorber approximation
means that the potential drop between the source and the wall is so large that all
electrons reaching the wall recombine with ions located there. In a general case,
assuming mass and temperature disparities of electrons and ions, the scenario
for which the wall remains neutral is expected when the excess of incident elec-
trons (not participating in recombination) is compensated by an electron flux
from the wall. This excess, represented in the model by the coefficient 7, can be
obtained for the case of the uncharged wall £;, = 0 by rewriting Eq. of
the system as

B1)  nL) =
2(1—exp (—¢1))

/% (e (rpnertey =7 /=452 1) ep () enfey /251

The parametric space of system of Egs. is visualized in Fig. [2| From
now on and for the entire paper we provide calculations for atomic hydrogen
= m; g/me ~ 1837 and 7 = 100. Not every solution appears to be physical.
One can notice that possible values of the normalized wall potential ¢, lie within
a range from 0 to some negative value and further decrease of ¥y would result
in the complex-valued normalized electric field (£2 < 0, see middle plot), which is
unphysical. The right-most plot in Fig.[2]shows that every physical wall potential
11, corresponds to unique distance vy,.

The results indicate that for given source properties it is not possible to
obtain a solution with zero electric field at the wall and equal number of electrons
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€ = =2 [ Av(y,vr,n)dy & = =2 [ Av(,dr, m)dy) v (Vr,n)
0 1 max
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F1G. 2. Solution space of system of Egs. . The left colormap depicts normalized electric
field at the wall £2 with the red isoline showing a relation between normalized wall potential
11, and ratio of incident to backscattered electrons 7 for which the electric field at the wall
vanishes £, = 0. We denote for brevity Av = v; — v.. The middle colormap shows
distribution of normalized electric field £ between the source and the wall for different 1z,
and 7. The red isoline corresponds to zero local electric field €2 = 0. The right plot shows the
relation between 1, and the normalized source-wall separation vy,. The black dotted line in
all three plots indicates the smallest physically possible value of the wall potential (the
largest possible potential drop), for which v, — co.

and ions reaching the wall (the solution for 7 = 0 is unphysical). Of course,
it would be possible to get some trivial solutions for the above wall conditions,
for example, if ions produced by the source have the same mass and temperature
as electrons. However, in this case the potential drop would be zero and the
sheath would not appear at all.

4. Charged wall scenario

It has been shown that the assumption about equal fluxes of incident electrons
and ions at the wall does not account for arbitrary values of the electric field £z..
The rigidity of the problem, brought by this assumption, can be investigated
within the frame of the discussed model. The system of Egs. (2.11) remains
unchanged, however, now we exclude the solutions with unequal incident fluxes
of electrons and ions by setting n = 0 but allow for arbitrary values of electric
fields at the wall, i.e., 5% in Eq. may now take nonzero values. In other
words, we fix the backscattering coefficient to reduce solutions of Eq. (2.11a]) to
a curve in (¢, 1) space. Visualization of the parametric space in Fig. |3| shows
that among all possible combinations of ¥y, and &7, not all of them are physical.
Again, for some of them, the electric field in the region between the source and
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=2 [/ Av(, pr,m)dy — €7 & =2 Av(d,vr, m)dd L (¥r,m)

_§%=0

max

min
0.0 0.1 0.2 0.3 04 —4 -3 -2 -1 00 50 100
97 ¥ v = L/Xp

Fia. 3. Solution space of Eq. (2.11) for n = 0 and arbitrary {1, in Eq. (2.11a)). The left

colormap gives the solutions of Eq. (2.11a]), shown as a red isoline, for selected electric field
(horizontal axis) and potential (vertical axis) at the wall. The middle colormap shows
distribution of normalized electric field £2 between the source and the wall for different
tz, and 7. The red isoline corresponds to zero local electric field €2 = 0. The right plot shows
unique normalized source-wall separations vy, that correspond to given solutions. The black
dotted line in all three plots indicates the smallest physically possible value of the wall
potential (the largest possible potential drop), for which vy — oo.

the wall becomes complex-valued (£2 < 0, see middle plot). There are also two
zero-field solutions (left plot): one is non-physical, while another is trivial as it
corresponds to zero source-wall separation vy, = 0. By looking at the right-most
plot one can notice that the smallest physical wall potential (the largest physical
potential drop) corresponds to infinite separation vy, — oo. In addition, every
source-wall separation is uniquely paired to a certain wall potential which, in its
turn, is paired (non-uniquely) to a certain electric field. This correlation between
the source-wall separation and the wall potential leaves no room for arbitrariness
of the electric field at the wall, thus, the problem is overspecified.

4.1. Structure of the monotonic potential drop

It is clearly visible that the infinite length solution in Fig. [3]is tangent to the
zero electric field isoline implying 11|, 00 to be the only solution with £ = 0
at some point between the source and the wall. This point must be the plateau
described in the work by SCHWAGER and BIRDSALL and was used as an as-
sumption to close the system of equation avoiding the need to specify the electric
field at the wall. In the original model the simulation region is characterized
by two distinct potential drops: the source sheath and the collector sheath. The
source sheath forms to neutralize the particles emitted from the source bound-
ary. Ions in the model reach the Bohm minimum velocity (Vg > Cs = \/ kT, /mi)
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before crossing the source sheath. The Bohm criterion ensures that the electric
field within the sheath (where plasma is no more treated as collisional) is real-
valued. The condition is obtained from analysis of the Poisson equation, assuming
cold ions and Boltzmann electrons. The Poisson equation is then transformed
into the relation for the squared electric field in the sheath and linearized, giving
the criterion of minimum kinetic energy of incident ions at the sheath edge |19]
(assuming the electric field there is negligibly small compared to the rest of
the sheath). SCHWAGER and BIRDSALL mention that the presence of the
source sheath “is obviating the need for a presheath acceleration”.

Since we do not make an assumption about the presence of quasineutral
region but rather define the electric field at the wall we do not restrict our-
selves to Schwager’s solution and the problem statement is a priori unaware
of quasineutral region and two distinct separate sheaths. If the separate re-
gions exist there should be inflection points of the electric potential profiles
dE/dy = e5'p = 0 or d¢/dv = v; — v, = Av in dimensionless variables. The
normalized electric field gradient is depicted in the left plot in Fig. [ It can
be seen that for solutions with ¥ being below a certain value there exist two
inflection points that correspond to borders between three separate regions with
concave, convex and then again concave potential profiles. For other solutions
the potential profile is always concave (which is natural as the electric field at

4 = Av(y,¥r.n) v=[Y (52(1&,1/}%7]))*5(11&

max

- W|<uz>:uﬁ:‘/ﬂ/2

min

T
0 20 40 60 80 100
v=y/Ap

Fia. 4. Gradient of normalized electric field of all possible solutions (left) and corresponding
potential profiles as a function of spatial coordinate (right) for the charged wall with n = 0.
The red isoline on the left plot indicates zero gradient of the electric field (zero charge
density). The dotted line indicates the smallest physically possible value of the wall potential
(the largest possible potential drop), for which v, — co. The black dash-dotted horizontal
line corresponds to 3 for which average ion velocity reaches the value of ion-acoustic speed.
As previously, the black dotted line indicates the smallest physically possible value of the wall
potential (the largest possible potential drop), for which vy, — co. The dashed lines on both
plots indicate the wall potentials 11, of the corresponding profiles plotted on the right plot.
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the source is set to be zero and the monotonic potential drop is assumed). The
right plot in Fig. [4] shows some exemplary spatial distributions of normalized
electric potential. Starting from some sufficiently large source-wall separation
it becomes clearly seen that the further increase of L only expands the quasi-
neutral plasma region (or plateau) while the source and the wall sheaths remain
unchanged. It is also worth to point out that normalized plasma density in the
quasineutral region is v; = n;/n; = 2.66 - 102, which means that it is almost
38 times smaller than plasma density at the source and this would contribute
to increase of the local Debye length compared to the source value A}, (roughly
by 6 times), however, one must also keep in mind that a decrease in the local
electron temperature should contribute to a decrease in the local Ap.

The wall sheath of the source-wall model should be of the same nature as
in the quasineutral plasma sheath model, therefore, to check if Bohm’s criterion
for ion velocity is satisfied we look at which point ions reach the ion acoustic
velocity Cs, which takes the dimensionless form ug = /77 /2. From constant ion
flux and density described by Eq. one can inherit that the ion velocity
depends only on the local value of the electric potential

N i exp(T)
(41) <u2>('¢) - Vz(w) - erfcw'

The numerically obtained electric potential at which the ion acoustic velocity
is reached indicates in Fig. [} For double sheath solutions the velocity of ions
exceeds Cy already at the source sheath, as in [13]|. The existence of non-zero
electric field for all physical solutions of the finite source-wall separation in the
model implies the monotonic potential drop to exist even for velocities below
Bohm’s limit, however, this sheath is the source sheath not the wall sheath.
Such a conclusion arises from the fact that if we consider the second inflection
point (the closest to the wall) as the end of the source sheath and beginning
of the wall sheath, then the absence of inflection points at all (see the left plot
in Fig. 4) means that only the source sheath exists.

To show that ion acoustic velocity is the lowest limit required for the wall
sheath to appear we modify the description of ions by assuming them to be
monoenergetic with non-zero velocity at the edge of the source region. The ion
density for the collisionless case can be obtained from the continuity equation
and energy conservation. Keeping the ion production rate the same as in the
case of the Maxwellian source the normalized ion density can be represented in
the dimensionless units as

(4.2) vi(p) =

1

21/“120 — Y

The results of using the new relationship for the ion density in a system of
Egs. (2.11) are shown in Fig. [5} The red isoline representing zero of the nor-
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Fia. 5. Gradient of normalized electric field of all possible solutions (left) and corresponding
potential profiles as a function of spatial coordinate (right) for the charged wall with n =0
and monoenergetic ions that enter the region with ion acoustic velocity us = /77/2. The red
isoline on the left plot indicates zero gradient of the electric field (zero charge density). The
black dotted line indicates the smallest physically possible value of the wall potential (the
largest possible potential drop), for which v, — co. The dashed lines on both plots indicate
the wall potentials ¥, of the corresponding profiles plotted on the right plot.

malized electric field gradient (equivalent of charge density) in the left plot is
tangential to the infinite length solution and does not enter the region of other
physical solutions. This means that electric potential profiles of these solutions
do not have inflection points, which is confirmed by the right plot depicting some
selected electric potential profiles.

There are several aspects that make the latter solution different comparing
to the traditional calculation of the collisionless sheath region of the two-scale
approach. First, while both solutions assume a zero electric field at the sheath
entrance, in the two-scale analysis Fy = 0 should be interpreted as the field is
negligibly small with respect to the rest of the sheath but appears to be large
with respect to the presheath region, while in the discussed approach the field
is zero due to symmetry. Second, in the two-scale approach the quasineutral-
ity of plasma at the sheath entrance is actually defined as the strict neutrality
n; = Ne, while in the discussed approach the relation between the electron and
ion densities depends on L such that for small values n. < n; but the differ-
ence becomes smaller as L — oo. Third, electrons in the two-scale approach are
assumed to follow the Boltzmann relation n, o exp(—ke—ﬁ), implying the equi-
librium (the Maxwellian velocity distribution), while in the discussed approach
the collisionless electrons end up having cut-Maxwellian velocity distribution
due to the potential drop, which is closer to the real life situation. However,
the effect of assuming Boltzmann electrons appears to be negligible. The po-
tential drop from the two scale analysis can be obtained by equating electron
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I'e = 0.5ne0exp (e(or — o)/ (kTe))\/2kTe/(mme) and ion I'; = nijo/kTe/m;
fluxes at the wall. Since the presheath is assumed to be quasineutral n.g =~ n;g
and setting ¢o = 0, the potential drop is equal to ¢, = 0.5(kT%/e) In (27m./m;)
or ¥, = 0.5In (27 /u). For ions of monoatomic hydrogen the calculated value
is ¢y, = —2.84, while the numerical result of our calculations for the case of
infinite source-wall separation, cut-Maxwellian electrons and cold ions with ion
acoustic velocity at position v = 0 is ¥y = —2.85. One should keep in mind
that the choice of both V;g = C; and the boundary condition Ey = 0 for the
sheath edge in the two-scale analysis is mere an approximation since the electric
field at the sheath edge is negligible compared to the rest of the sheath. In fact,
there are infinitely many combinations of Vj and Ejy that give the monotonic
potential drop , even those allowing for Vy < Cy but requiring Ey > 0.

4.2. Effects of electron reflection

The rigidity of the problem statement with the assumption of equal incident
electron and ion fluxes, mentioned at the beginning of this section, can be inferred
from Fig.|3|by the fact that every possible wall potential ¢, is strongly correlated
with the source-wall separation vy, such that they form unique pairs. Hence, to
allow for possibility to impose a different electric field at the wall, the wall
properties must be somehow modified. In the frame of the presented model we
illustrate this by changing the coefficient of elastic backscattering 7. Indeed,
as shown in Fig. [ there is given a fixed distance between the source and the

2
=2 [V Av(y,pr,m)dy — € =0 vrL($r,n) and v(e,Pr,n)
A v (YL, m)
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Fia. 6. Solutions of Eq. for different 7 and arbitrary electric field at the wall in
Eq. A The left plot gives the solutions of Eq. for selected electric field
(horizontal axis) and potential (vertical axis) at the wall. The dotted lines indicate the
smallest physically possible value of the wall potential (the largest possible potential drop),
for which v, — oco. The right plot shows unique lengths that correspond to the given
solutions as well as exemplary electric normalized potential profiles for a given 1 and
v = L/Ap = 120.
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wall vy, it is now possible to have an “arbitrary” wall electric field, which is
bounded in the region between zero and the value that corresponds to the case
of the fully absorbing wall (n = 0) so that &£z, € [0, |,=0]. For large fixed source-
wall separation the structure of the source sheath remains practically insensitive
to electron backscattering from the wall. At the same time the potential drop
between the wall sheath decreases with the increase of n. The same goes for an
electric field. The situation with &7, = 0 is exactly the same as that discussed
in Section [3| and corresponds to critical ratio of elastic backscattering 7,,. This
means that all physical results of the uncharged wall problem (E7, = 0) in Fig.
give critical backscattering coefficients for different source-wall separations. The
smallest 7, corresponds to vy, — oo (or L — 00), as shown by the red isoline
on the leftmost plot in Fig. [2l The critical elastic backscattering coefficient 7,
constitutes the limit of applicability of the discussed model as increasing n above
the critical value would result in reversal of the wall electric field and emergence
of a virtual cathode, which contradicts the assumption of monotonic potential
drop. The virtual cathode manifests itself as a potential minimum that emerges
in the vicinity of the wall. The reversed electric field in the region between the
virtual cathode and the wall reduces the emitted electron flux and this scenario
is usually called space charge limited emission [9]. The effect of decreasing the
potential drop with the increase of emission, for n < 7., is qualitatively similar
to what is shown by HOBBS and WESSON [22] who consider emission of cold
electrons from the surface of the wall. The effect allows the plasma potential to
be measured using emissive Langmuir probes and the floating potential method
[9, 23]. The difference between the plasma potential and the floating potential
of the probe (equivalent to Ay = 1y — 11, in the presented model) decreases
with the increase of emission until the emitted current becomes space charge

— n>0,17=0
27 n=0n>0
4 space charge saturated
2 potential (n > ner)
t
= g
_
=
—8
~10 4
T T T T
0.0 0.2 0.4 0.6 0.8 1.0
m N

FiG. 7. Electric potential at the wall, ¥, as a function of electron, 7, and ion, 7;, elastic
backscattering coefficients for L — oco.
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limited (n > 7., equivalently, see Fig. , resulting in space charge saturation
of the floating potential. The potential difference becomes Ay = 1, hence, the
measurement error is proportional to plasma electron temperature Ap ~ kT, /e.

4.3. Ion reflection

In the above considerations ions were assumed to immediately recombine at
the surface of the wall, which is highly probable as, usually, ionization energy
is greater than the work function of the wall material. Regarding experimental
data on reflection of ions, the experiments are usually made for particles with en-
ergies of the order starting from 0.1 to 10 keV [24-26|, whereas the energy of ions
from quasineutral plasma bombarding the wall is of the order of electron thermal
energy. Another issue is that very often by elastic reflection of ions authors mean
the ratio of incident ion flux to the reflected flux of recombined neutrals [27-29].
The reflection coefficient as the ratio of incident ions to reflected ions bombarding
the tungsten surface is considered by HAGSTRUM [30], however, the energy range
of incident ions is also very large. The reflection coefficients found in that work
are negligibly small, ranging from 0.0004 to 0.002. We could not found any other
works, describing ion reflection coefficients for other materials and low energy
ranges. Nevertheless, we find it necessary to elaborate this question for the sake
of completeness. As was shown for the case of electron backscattering, the inten-
sified reflection reduces the potential drop, thus, intuitively, the ion reflection is
expected to make 17, smaller (increase the potential drop).

Let us consider a scenario when some fraction of incident ions 7; is backscat-
tered (reflected) from the wall. For simplicity, we assume that the reflected parti-
cles keep their incident energy and their velocity simply reverses its sign ( fi4(u) =
ﬁinc(—u))b:%. In the presence of a monotonic potential drop between the
source and the wall, all reflected ions will reach the source such that their ve-
locity distribution function will be identical to that of the source (with the sign
reversed) and after crossing the source boundary they will not be distinguished
from the source ions even without the refluxing mechanism used for electrons.
This means that, within the entire collisionless region v = (0,vr), the velocity
distribution function of reflected ions is the same as the velocity distribution
function of the source, with the sign reversed, (fis(u) = f“(—u))lve(o’%) and
the “refluxed” ions have exactly the same velocity distribution function as the
source ions (fi3(u) = ﬁ-l(u))\ve(&%). We know from the conditions at the wall
that (keep in mind that the index number is the same as for electrons)

(4.3) Yia = =i (Vi1 + Vi3)s
and from the conditions at the source that

(4.4) Yia = —i3-
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The two flux balances hold true in the entire region v = (0, vy,), moreover, each
separate flux is kept constant too. From the equality of VDFs we know that the
absolute values of average velocities are the same (for certain position y(y)) and
we can drop them out from the flux balance and determine how the reflected
and ‘refluxed” ion densities relate to the source ion density

(4.5) Vi3 = %lm’m Vg = g _me'l = Vi
Thus, the total ion density becomes
(4.6) Vi =V + 212727%%‘1 = 1— Zi V1.

The results for different n; are depicted in Fig. [8] As expected, the potential
drop increases with the proportion of reflected ions. The dependency of 1|1 — 00
on 7); is additionally shown in Fig. [7] The width of the source and wall sheaths,
shown in Fig. [§] decreases due to an increase of the plasma density and conse-
quent decrease of the local Debye length.
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FiG. 8. Solutions of Eq. for different 7; and arbitrary electric field at the wall. The left
plot gives the solutions of Eq. for selected electric field (horizontal axis) and potential
(vertical axis) at the wall. The dotted lines indicate the smallest physically possible value of
the wall potential (the largest possible potential drop), for which v, — oco. The right plot
shows unique lengths that correspond to the given solutions as well as exemplary electric
potential profiles for a given n; and vy, = 120.

5. Influence of collisions

The question arises whether the presence of collisions can change the results of
the considerations regarding the overdetermination of the problem in the case
of a perfect absorber. To answer this question, for simplicity, let us consider the
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stationary Boltzmann equations for electrons and ions in the BGK (Bhatnagar—
Gross—Krook) approximation. As before, we assume that the plasma is homo-
geneous along planes parallel to the wall, so its parameters depend only on the
variable y. For simplicity, we ignore collisions between electrons, assuming that
electrons can collide with neutral particles only. In this case, the electron en-
ergy remains essentially constant during collisions, and the collisions result in
isotropization of the distribution function. Consequently, the electron distribu-
tion function satisfies

0 el 0

(5.1) v—fe —

fe: ea feiso_fea
y Me OV Vea(fe, )

where by v we mean the y-component of velocity, fe;so(y,v) is obtained by
averaging f(y, v) over angles, v, is the electron-atom collision frequency. Since
fe also contains electrons reflected from the wall, it depends in general on 7.
For ion distribution function f;(y, v) we also consider collisions with neutral
background only. In many discharges collisions of charged particles with neu-
trals dominate due to typically larger density of the neutral particles and larger
cross-sections for that type of collisions. Therefore, for ions we have

0 el 0
2 i+ — -t = Vig(fieqg — §i),
52) Vo it E Dt = vialfes — )

where f; ., (y, v) is the equilibrium distribution function of ions.

Boundary conditions. We assume similarly as before that the source of
plasma is located at the symmetry plane y = 0. Newly created ions and electrons
have Maxwellian distribution functions of specified temperatures. We assume
that the intensity of the source is given which means that the ion and electron
currents (to the wall at y = L) are known, being equal in absolute values and
having opposite signs, so the total current balance satisfies j; + je = 0. The elec-
trons and ions when crossing the source plane regain their original Maxwellian
distributions. On the other hand, electrons reaching the wall undergo specular
reflection with probability 1 or get absorbed with probability 1 —». For simplic-
ity we assume that 7 is independent of the energy of the incident electron. We
also assume that ions are neutralized when they reach the wall.

For a given electric field, the equations for f. and f; can be solved using the
characteristics. Characteristic lines for ion equation starting from y = 0 reach
the wall, while the characteristics for the electron equation either reach the wall
or return to the source, depending on the electron initial velocity. When the char-
acteristics reach the wall they return but in this case the returned distribution
function f, is the incident distribution multiplied by 7.

Statement. Now we notice that for the given electric field E(y) (E(y) > 0)
and the above stated boundary conditions the distribution functions f. and f;
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can be determined from Eq. (5.1) and Eq. (5.2). This means that the charge
densities n;, n. can be also determined. On the other hand, the electric field
potential satisfies the Poisson equation

d?p
(5.3) eodin = —e(n; — ne)
and the boundary conditions, or rather the initial conditions are @9 = 0,
Er = —i—“;\y: 1. = 0, resulting from the fact that y = 0 is the symmetry plane of

the problem. Consequently, the electric field at = L is already determined (for
a given 7). The perfect absorber case n = 0 would imply that the electric field E,
and thus the surface electric charge density at the wall is uniquely determined,
regardless of the physical properties of the wall. This short reasoning shows that
taking collisions into account does not change the main conclusion of this work.
Following this simplified scheme of reasoning one can easily take into account
other possible processes such as Coulomb collisions.

6. Conclusions

We expect that the problem of the Debye sheath formation between the
plasma and the floating wall should have unique solution, provided that the fol-
lowing conditions are given: a) the efficiency of the plasma source; b) the dis-
tance L between the source and the wall; c¢) the electric field at the wall.
Of course, the source efficiency must also contain information about the dis-
tribution functions of the created particles (electrons and ions), while ¢) tells us
about the source properties — how many electrons can the wall absorb without
returning them back to the plasma. It is clear that we talk about a dynamic quan-
tity here. For a given flux of bombarding electrons some equilibrium should be
established, so the wall’s capacitance (the ability to hold a charge) likely depends
on the intensity of the bombarding flux. However, by changing, for example, the
wall temperature or the material from which it is made, we can influence this
capacitance and thus the electric field at the wall surface.

Using the collisionless model, we began our considerations with a rather ficti-
tious wall, which can be considered a physical idealization, i.e., a wall that does
not absorb electrons at all. If the wall contains no trapped electrons, the electric
field at its surface vanishes, E;, = 0. Therefore, all electrons are either reflected
or neutralized by ions at the wall surface.

We can imagine an equilibrium situation in which all incoming to the wall
electrons are neutralized by ions. For this to happen, a potential drop must
be established so that the number of electrons reaching the wall is equal to
the number of arriving ions. Clearly, at the beginning, when the sheath is not
yet formed, the flux of electrons is much greater, so most of electrons must be
reflected. Thus, the wall would act as a perfect absorber when the equilibrium
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(stationary state) is achieved. We would then have a case of a “perfect absorber
in the weak sense”. However, it turns out that such a solution does not exist.
Indeed, for equal fluxes of incident electrons and ions, (characterized in the model
by n = 0) the zero electric field solution at the wall gives complex-valued electric
field within a certain region of the domain (0, L). For a solution to exist for given
L > 0 and given source properties, we must assume that a certain, well defined,
number of electrons must be reflected, so there is exactly one “effective reflection
coefficient” n, 0 < i < 1, for which there is a solution representing the sheath.
In most cases, when speaking about a perfect absorber, authors mean what we
call here “perfect absorber in the weak sense”, although in numerical simulations
this assumption is used also in the process of sheath formation.

It should be noted here that the assumption that the wall acts as a weak
absorber does not concern the properties of the wall, but rather the value of the
potential drop. Then, it is assumed that the electric field is formed in such a way
that it deflects most of the electrons, and exactly as many ions as reach the wall.
The opposite is true for a perfect absorber, where the wall always absorbs excess
electrons.

A similar situation occurs in general case. Suppose L and the source efficiency
are given. For a solution representing the Debye sheath with the predetermined
electric field Ey, at the wall to exist, we must assume that a certain fraction
(defined by n) of the incident electrons is reflected from the wall. As we have
already discussed, E;, determines the wall’s ability to retain absorbed electrons.

As we argue in the previous section, taking collisions into account should not
have a significant impact on the mathematical formulation of the problem and
the general properties of the solution. To have a unique sheath solution for the
given size L and the specified source additional assumptions are needed, such
as the perfect absorber assumption, which in our opinion, is too restrictive. For
example, in [13] where the plasma source-wall model that we use is also employed,
the perfect absorber assumption is applied without specifying the domain size
L. Instead, it is assumed that at the inflection point of the electric potential
profile ¢(y) the electric field takes on a zero value. Numerical simulations show
that indeed, for a large value of L, the electric potential profile exhibits strong
drops near the source and the wall, separated by a plateau region with the
inflection point somewhere in the middle. This suggest that at the inflection
point, where the electric field reaches a minimum (n; = n.), the field is very
close to zero.

The first strong potential drop near the source plays a role of a presheath where
ions are accelerated to velocities close to the Bohm velocity, while the second one
near the wall models the Debye sheath. For a large L, the lack of collisions results
in the appearance of a broad plateau between these layers. If collisions were taken
into account, the presheath would extend into the plateau region.



PLANAR PLASMA SOURCE AND A FLOATING WALL 617

As was shown in our calculations, the vanishing of the electric field at the
inflection point implies that L becomes infinite, although the obtained potential
drop seems to be realistic (very close to the values that correspond to the finite
but sufficiently large L). For finite positive values of the field at the inflection
point, one obtains finite values of L. Hence, by assuming an electric field at
the inflection point we determine the domain size and consequently the elec-
tric field E, at the wall surface. It is observed that the potential drop also
depends on L.

The vanishing electric field condition is often used as an assumption defining
the edge of a Debye sheath in a multiscale analysis. However, GODYAK and
STENBERG [31] note that this assumption also leads to the infinite separation of
the sheath edge from the wall.

The dependence of the plasma potential on the spatial size of the problem can
be also found in models that assume electrons in thermal equilibrium whereas
ions are treated kinetically. For example, the pioneering work by TONKS and
LANGMUIR |32] or 33| 34]. These models assume plasma generation in the entire
domain and define the ionization source to be either constant or proportional
to the electron density ng exp(—;—i). This means that for different size of the
region the ion current density towards the wall is different, making it difficult
to compare to the presented model in which plasma generation is a fixed value.
Nevertheless, the different nature of the dependence in those models, compared to
the one shown in the present paper, is evident from the aforementioned difference
in the assumptions.

For a sufficiently large L we observe the existence of a plateau of the electric
potential profile with the inflection point in the middle. The plateau is observed
for different 7. In this case, for a given 1 > n > 0 we can solve a slightly easier
problem by assuming the vanishing electric field at the inflection point (as it is
done in 13| |14]) and still obtain a good approximation of the potential drop.

Of course, the considered in this work model is based on many simplifica-
tions such as lack of collisions, localization of plasma source at y = 0 plane,
electron backscattering that is independent on the incident electron energy and
the absence of secondary electrons. It is certainly possible to model more intricate
scenarios using numerical models, such as 2d collisional sheath with non-uniform
magnetic field 35|, or to kinetically model collisional effects (and even time de-
pendence) in the two scale analysis [36, 37|, or to include lateral energy compo-
nents and more complex electron-wall interactions to the collisionless source-wall
model [38] [39]. We, however, opted for a simplified model as the main goal is
to demonstrate that the often-made assumption that the wall acts as an ideal
absorber is physically incorrect not only in the sheath formation process but also
at the equilibrium state. Furthermore, if we are interested in the time of sheath
formation, this assumption can lead to large errors.
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Finally, let us note that the case when the plasma is produced in the entire
volume can be also treated similarly as we did in Section [5| so this too, we
believe, will not change the main conclusion that the assumption of a perfect
absorber leads to an overdetermined problem.
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